Yao-Lan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/21854/publications.pdf

Version: 2024-02-01

331670 395702 1,343 71 21 33 citations h-index g-index papers 73 73 73 1708 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Phenolic compounds from Origanum vulgare and their antioxidant and antiviral activities. Food Chemistry, 2014, 152, 300-306.	8.2	135
2	Matrine-Type Alkaloids from the Roots of <i>Sophora flavescens</i> and Their Antiviral Activities against the Hepatitis B Virus. Journal of Natural Products, 2018, 81, 2259-2265.	3.0	71
3	Isodeoxyelephantopin induces protective autophagy in lung cancer cells via Nrf2-p62-keap1 feedback loop. Cell Death and Disease, 2017, 8, e2876-e2876.	6.3	67
4	Four Matrine-Based Alkaloids with Antiviral Activities against HBV from the Seeds of <i>Sophora alopecuroides</i> . Organic Letters, 2017, 19, 424-427.	4.6	62
5	Dimeric Matrine-Type Alkaloids from the Roots of <i>Sophora flavescens</i> and Their Anti-Hepatitis B Virus Activities. Journal of Organic Chemistry, 2016, 81, 6273-6280.	3.2	61
6	Chemical composition and antiproliferative activity of essential oil from the leaves of a medicinal herb, <i>Schefflera heptaphylla</i> . Phytotherapy Research, 2009, 23, 140-142.	5.8	47
7	Phloroglucinol Derivatives with Unusual Skeletons from <i>Cleistocalyx operculatus</i> and Their <i>in Vitro</i> Antiviral Activity. Journal of Organic Chemistry, 2018, 83, 8522-8532.	3.2	42
8	Sophalines E–I, Five Quinolizidine-Based Alkaloids with Antiviral Activities against the Hepatitis B Virus from the Seeds of <i>Sophora alopecuroides</i> . Organic Letters, 2018, 20, 5942-5946.	4.6	40
9	Diterpenoids from the roots of Croton crassifolius and their anti-angiogenic activity. Phytochemistry, 2016, 122, 270-275.	2.9	39
10	Cleistocaltones A and B, Antiviral Phloroglucinol–Terpenoid Adducts from <i>Cleistocalyx operculatus</i> . Organic Letters, 2019, 21, 9579-9583.	4.6	38
11	Inhibition of Nrf2 enhances the anticancer effect of 6-O-angeloylenolin in lung adenocarcinoma. Biochemical Pharmacology, 2017, 129, 43-53.	4.4	34
12	\hat{l}^2 -Carboline Alkaloids from the Seeds of <i>Peganum harmala</i> and Their Anti-HSV-2 Virus Activities. Organic Letters, 2020, 22, 7310-7314.	4.6	33
13	Cytotoxic and anti-inflammatory active phloroglucinol derivatives from Rhodomyrtus tomentosa. Phytochemistry, 2018, 153, 111-119.	2.9	30
14	Antifeedant and Antiviral Diterpenoids from the Fresh Roots of Euphorbia jolkinii. Natural Products and Bioprospecting, 2014, 4, 91-100.	4.3	28
15	Quinolizidine alkaloids from Sophora tonkinensis and their anti-inflammatory activities. Fìtoterapìâ, 2019, 139, 104391.	2.2	28
16	Antiviral activity of ethanol extract of Lophatherum gracile against respiratory syncytial virus infection. Journal of Ethnopharmacology, 2019, 242, 111575.	4.1	28
17	Crude triterpenoid saponins from Ilex latifolia (Da Ye Dong Qing) ameliorate lipid accumulation by inhibiting SREBP expression via activation of AMPK in a non-alcoholic fatty liver disease model. Chinese Medicine, 2015, 10, 23.	4.0	26
18	Sesquiterpene lactones from Elephantopus mollis and their anti-inflammatory activities. Phytochemistry, 2017, 137, 81-86.	2.9	25

#	Article	lF	CITATIONS
19	Phenolic Compounds from the Flowers of Bombax malabaricum and Their Antioxidant and Antiviral Activities. Molecules, 2015, 20, 19947-19957.	3.8	24
20	Crude triterpenoid saponins from Anemone flaccida (Di Wu) exert anti-arthritic effects on type II collagen-induced arthritis in rats. Chinese Medicine, 2015, 10, 20.	4.0	23
21	Drychampones A–C: Three Meroterpenoids from <i>Dryopteris championii</i> . Journal of Organic Chemistry, 2016, 81, 9443-9448.	3.2	23
22	Antiviral benzofurans from Eupatorium chinense. Phytochemistry, 2016, 122, 238-245.	2.9	23
23	Monoterpene derivatives from the roots of Paeonia lactiflora and their anti-proliferative activity. Fìtoterapìâ, 2014, 98, 124-129.	2.2	21
24	New labdane diterpenoids from Croton laui and their anti-inflammatory activities. Bioorganic and Medicinal Chemistry Letters, 2016, 26, 4687-4691.	2.2	20
25	Grandiflodines A and B, two novel diterpenoid alkaloids from Delphinium grandiflorum. RSC Advances, 2017, 7, 24129-24132.	3.6	20
26	EM23, a natural sesquiterpene lactone, targets thioredoxin reductase to activate JNK and cell death pathways in human cervical cancer cells. Oncotarget, 2016, 7, 6790-6808.	1.8	20
27	Myrtucomvalones A–C, three unusual triketone–sesquiterpene adducts from the leaves of Myrtus communis †Variegata'. RSC Advances, 2017, 7, 22735-22740.	3.6	19
28	Cajanusflavanols A–C, Three Pairs of Flavonostilbene Enantiomers from <i>Cajanus cajan</i> . Organic Letters, 2018, 20, 876-879.	4.6	16
29	Triterpenoid saponins from the root bark of Schima superba and their cytotoxic activity on B16 melanoma cell line. Carbohydrate Research, 2015, 413, 107-114.	2.3	15
30	Alopecuroides A–E, Matrine-Type Alkaloid Dimers from the Aerial Parts of <i>Sophora alopecuroides </i> Journal of Natural Products, 2019, 82, 3227-3232.	3.0	15
31	Three new diterpenoids from <i>Croton laui</i> Merr. et Metc. Natural Product Research, 2017, 31, 1028-1033.	1.8	14
32	Terpenoids from the stems of Celastrus hindsii and their anti-RSV activities. Fìtoterapìâ, 2018, 130, 118-124.	2.2	14
33	Antiviral dicaffeoyl derivatives from <i>Elephantopus scaber</i> . Journal of Asian Natural Products Research, 2011, 13, 665-669.	1.4	13
34	New triterpenoid saponins from the aerial parts of Schefflera kwangsiensis. Carbohydrate Research, 2014, 385, 65-71.	2.3	13
35	Two new isoquinoline alkaloids from the seeds of <i>Nandina domestica</i> . Natural Product Research, 2021, 35, 3254-3260.	1.8	13
36	Caffeic acid oligomers from Mesona chinensis and their In Vitro antiviral activities. Fìtoterapìâ, 2020, 144, 104603.	2.2	13

#	Article	IF	CITATIONS
37	Six new prenylated acetophenone derivatives from the leaves of Acronychia oligophlebia. Fìtoterapìâ, 2015, 105, 156-159.	2.2	12
38	Watsonianone A from <i>Rhodomyrtus tomentosa</i> Fruit Attenuates Respiratory-Syncytial-Virus-Induced Inflammation <i>In Vitro</i> Journal of Agricultural and Food Chemistry, 2017, 65, 3481-3489.	5. 2	12
39	Diterpenoid Alkaloids from Delphinium ajacis and Their Anti-RSV Activities. Planta Medica, 2017, 83, 111-116.	1.3	12
40	Structurally Diverse <scp>Matrineâ€Based</scp> Alkaloids with Antiâ€inflammatory Effects from <i>Sophora alopecuroides</i> . Chinese Journal of Chemistry, 2021, 39, 3339-3346.	4.9	11
41	Water-soluble matrine-type alkaloids with potential anti-neuroinflammatory activities from the seeds of Sophora alopecuroides. Bioorganic Chemistry, 2021, 116, 105337.	4.1	11
42	Sophaloseedlines Aâ€"G: Diverse <scp>Matrineâ€Based</scp> Alkaloids from <i>Sophora alopecuroides</i> with Potential <scp>Antiâ€Hepatitis</scp> B Virus Activities. Chinese Journal of Chemistry, 2021, 39, 2555-2562.	4.9	10
43	Hyperpatulones A–F, polycyclic polyprenylated acylphloroglucinols from <i>Hypericum patulum</i> and their cytotoxic activities. RSC Advances, 2019, 9, 7961-7966.	3.6	9
44	Sesquiterpenoids from the Whole Plants of <i>Chloranthus holostegius</i> and Their Antiâ€inflammatory Activities. Chinese Journal of Chemistry, 2021, 39, 1168-1174.	4.9	9
45	Five matrine-type alkaloids from Sophora tonkinensis. Journal of Natural Medicines, 2021, 75, 682-687.	2.3	9
46	Phorbol ester-type diterpenoids from the twigs and leaves of Croton tiglium. Journal of Asian Natural Products Research, 2017, 19, 1191-1197.	1.4	8
47	Chemical constituents from the thorns of Gleditsia sinensis and their cytotoxic activities. Journal of Asian Natural Products Research, 2020, 22, 1121-1129.	1.4	8
48	Oleonin, the first secoiridoid with $1\hat{l}\pm$ -configuration from Ligustrum lucidum. RSC Advances, 2013, 3, 16300.	3.6	7
49	New ursane-type triterpenoid saponins from the stem bark of Schefflera heptaphylla. Fìtoterapìâ, 2014, 92, 127-132.	2.2	7
50	A New Steroid Saponin from the Rhizomes of Paris polyphylla var. yunnanensis. Chemistry of Natural Compounds, 2017, 53, 93-98.	0.8	7
51	Cycloartane triterpenoid saponins from the herbs of Thalictrum fortunei. Carbohydrate Research, 2017, 445, 1-6.	2.3	6
52	New Acetophenone Derivatives from <i>Acronychia oligophlebia</i> and Their Antiâ€inflammatory and Antioxidant Activities. Chemistry and Biodiversity, 2018, 15, e18000080.	2.1	6
53	Six New Acylphloroglucinols from <i>Dryopteris championii</i> . Chemistry and Biodiversity, 2017, 14, e1700001.	2.1	5
54	Six New Pentacyclic Triterpenoids from the Fruit of <i>Camptotheca acuminata</i> . Chemistry and Biodiversity, 2017, 14, e1600180.	2.1	5

#	Article	IF	Citations
55	Isolation and identification of new prenylated acetophenone derivatives from <i>Acronychia oligophlebia</i> . Natural Product Research, 2019, 33, 2230-2235.	1.8	5
56	Crystal structure of betulinic acid methanol monosolvate. Acta Crystallographica Section E: Structure Reports Online, 2014, 70, o1242-o1243.	0.2	4
57	Pharmacokinetic characterization of anhuienoside C and its deglycosylated metabolites in rats. Xenobiotica, 2017, 47, 885-893.	1.1	4
58	Stilbene Glycoside Oligomers from the Roots of Polygonum multiflorum. Chemistry and Biodiversity, 2019, 16, e1900192.	2.1	4
59	Two New Compounds from <i>Wedelia chinensis</i> and Their Antiâ€inflammatory Activities. ChemistrySelect, 2018, 3, 3459-3462.	1.5	3
60	Isolation and crystal structure of 4-((2-(methoxycarbonyl)phenyl)amino)-2-methyl-4-oxobutanoic acid from Delphinium Grandiflorum, C13H15N1O5. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 521-522.	0.3	3
61	Inhibitory Effect of PIK-24 on Respiratory Syncytial Virus Entry by Blocking Phosphatidylinositol-3 Kinase Signaling. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	3
62	Isopropylpyrone and Phenylpyrones from the Leaves of <i>Hypericum monogynum</i> . ChemistrySelect, 2020, 5, 2317-2321.	1.5	3
63	One new sesquiterpene pyridine alkaloid from the stems and leaves of <i>Euonymus fortunei</i> Journal of Asian Natural Products Research, 2021, 23, 399-406.	1.4	3
64	Stilbene dimer xylosides and flavanols from the roots of Lysidice rhodostegia and their antioxidant activities. FÃ-toterapÃ-â, 2021, 153, 104997.	2.2	2
65	Three new sesquiterpene lactones from the whole plants of <i>Elephantopus scaber</i> . Natural Product Research, 2022, 36, 3619-3625.	1.8	1
66	Crystal structure of (E)-resveratrol 3-O-Î ² -D-xylopyranoside, C19H22O8. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 367-368.	0.3	1
67	Crystal structure of camptothecin, C20H16N2O4. Zeitschrift Fur Kristallographie - New Crystal Structures, 2018, 233, 365-367.	0.3	0
68	Crystal structure of ajacisine D monohydrate, C30H44N2O9. Zeitschrift Fur Kristallographie - New Crystal Structures, 2019, 234, 527-529.	0.3	0
69	The crystal structure of (2a′ <i>S</i> ,3 <i>R</i> ,5a′ <i>S</i> ,7′ <i>R</i>)-5-(furan-3-yl)-2a′,2a1′-dihydroxy-7 C ₁₉ H ₂₂ O ₇ . Zeitschrift Fur Kristallographie - New Crystal Structures. 2021. 236. 1359-1361.	'â€2-meth 0.3	yldecahydro-2
70	Crystal structure of 10-oxysophoridine, C15H22N2O2. Zeitschrift Fur Kristallographie - New Crystal Structures, 2021, 236, 15-16.	0.3	0
71	Three new compounds isolated from the whole plants of <i>Salsola collina</i> pall. Natural Product Research, 2022, , 1-8.	1.8	0