MarÃ-a José Pastoriza-Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2185180/publications.pdf

Version: 2024-02-01

MarÃa José

#	Article	IF	CITATIONS
1	CuO in water nanofluid: Influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilibria, 2011, 300, 188-196.	1.4	221
2	Thermal conductivity and viscosity measurements of ethylene glycol-based Al2O3 nanofluids. Nanoscale Research Letters, 2011, 6, 221.	3.1	184
3	A study on stability and thermophysical properties (density and viscosity) of Al2O3 in water nanofluid. Journal of Applied Physics, 2009, 106, .	1.1	159
4	Thermal conductivity and specific heat capacity measurements of Al2O3 nanofluids. Journal of Thermal Analysis and Calorimetry, 2013, 111, 1615-1625.	2.0	128
5	Rheological and volumetric properties of TiO2-ethylene glycol nanofluids. Nanoscale Research Letters, 2013, 8, 286.	3.1	122
6	Thermophysical profile of ethylene glycol-based ZnO nanofluids. Journal of Chemical Thermodynamics, 2014, 73, 23-30.	1.0	104
7	Rheological non-Newtonian behaviour of ethylene glycol-based Fe2O3 nanofluids. Nanoscale Research Letters, 2011, 6, 560.	3.1	103
8	Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids. Fluid Phase Equilibria, 2013, 337, 119-124.	1.4	103
9	Co3O4 ethylene glycol-based nanofluids: Thermal conductivity, viscosity and high pressure density. International Journal of Heat and Mass Transfer, 2015, 85, 54-60.	2.5	101
10	On the Formation of a Third, Nanostructured Domain in Ionic Liquids. Journal of Physical Chemistry B, 2013, 117, 10826-10833.	1.2	99
11	Enhancement of thermal conductivity and volumetric behavior of Fe <i>x</i> O <i>y</i> nanofluids. Journal of Applied Physics, 2011, 110, .	1.1	98
12	Thermal conductivity of dry anatase and rutile nano-powders and ethylene and propylene glycol-based TiO2 nanofluids. Journal of Chemical Thermodynamics, 2015, 83, 67-76.	1.0	85
13	High-Pressure Biodiesel Density: Experimental Measurements, Correlation, and Cubic-Plus-Association Equation of State (CPA EoS) Modeling. Energy & Fuels, 2011, 25, 3806-3814.	2.5	75
14	To Model Chemical Reactivity in Heterogeneous Emulsions, Think Homogeneous Microemulsions. Langmuir, 2015, 31, 8961-8979.	1.6	65
15	Characterization and measurements of thermal conductivity, density and rheological properties of zinc oxide nanoparticles dispersed in (ethane-1,2-diol+water) mixture. Journal of Chemical Thermodynamics, 2013, 58, 405-415.	1.0	58
16	Determining α-tocopherol distributions between the oil, water, and interfacial regions of macroemulsions: Novel applications of electroanalytical chemistry and the pseudophase kinetic model. Advances in Colloid and Interface Science, 2006, 123-126, 303-311.	7.0	54
17	Influence of Nanosegregation on the Phase Behavior of Fluorinated Ionic Liquids. Journal of Physical Chemistry C, 2017, 121, 5415-5427.	1.5	46
18	Quantitative determination of α-tocopherol distribution in a tributyrin/Brij 30/water model food emulsion. Journal of Colloid and Interface Science, 2008, 320, 1-8.	5.0	45

MarÃa José

#	Article	lF	CITATIONS
19	Thermophysical properties of (diphenyl ether+biphenyl) mixtures for their use as heat transfer fluids. Journal of Chemical Thermodynamics, 2012, 50, 80-88.	1.0	43
20	Measurements and Correlation of High-Pressure Densities of Phosphonium Based Ionic Liquids. Journal of Chemical & Engineering Data, 2011, 56, 2205-2217.	1.0	41
21	Effects of Temperature and Emulsifier Concentration on α-Tocopherol Distribution in a Stirred, Fluid, Emulsion. Thermodynamics of α-Tocopherol Transfer between the Oil and Interfacial Regions. Langmuir, 2009, 25, 2646-2653.	1.6	40
22	Evidence of viscoplastic behavior of exfoliated graphite nanofluids. Soft Matter, 2016, 12, 2264-2275.	1.2	25
23	Study of viscoelastic properties of magnetic nanofluids: an insight into their internal structure. Soft Matter, 2013, 9, 11690.	1.2	22
24	Effects of acidity and emulsifier concentration on the distribution of vitamin C in a model food emulsion. Journal of Physical Organic Chemistry, 2012, 25, 908-915.	0.9	21
25	Micellar Effects on the Reaction between an Arenediazonium Ion and the Antioxidants Gallic Acid and Octyl Gallate. Helvetica Chimica Acta, 2008, 91, 21-34.	1.0	18
26	Determination of Transport Properties of Glycol-Based NanoFluids Derived from Surface Functionalized Graphene. Nanomaterials, 2019, 9, 252.	1.9	16
27	Kinetics and mechanism of the reaction between 4â€hexadecylbenzenediazonium ions and vitamin C in emulsions: further evidence of the formation of diazo ether intermediates in the course of the reaction. Journal of Physical Organic Chemistry, 2008, 21, 524-530.	0.9	14
28	Measurement and Prediction of Densities of Vegetable Oils at Pressures up to 45 MPa. Journal of Chemical & Engineering Data, 2013, 58, 3046-3053.	1.0	13
29	Tailoring Nanofluid Thermophysical Profile through Graphene Nanoplatelets Surface Functionalization. ACS Omega, 2018, 3, 744-752.	1.6	12
30	Fluorimetric determination of structural parameters of BuOH/SDS/H2O reverse micelles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2004, 249, 25-28.	2.3	9
31	Dediazoniation in SDS/BuOH/H2O Reverse Micelles:Â Structural Parameters, Kinetics, and Mechanism of the Reaction. Langmuir, 2005, 21, 2675-2681.	1.6	9
32	Dediazoniation of 1â€naphthalenediazonium tetrafluoroborate in aqueous acid and in micellar solutions. International Journal of Chemical Kinetics, 2008, 40, 301-309.	1.0	7
33	Interfacial kinetics in octane based emulsions. Effects of surfactant concentration on the reaction between 16-ArN2+ and octyl and lauryl gallates. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 480, 171-177.	2.3	6
34	Butanolysis of 2â€methylbenzenediazonium ions: product distribution, rate constants of product formation, and activation parameters. Journal of Physical Organic Chemistry, 2009, 22, 390-396.	0.9	5
35	Butanolysis of 4-methylbenzenediazonium ions in binary n-BuOH/H2O mixtures and in n-BuOH/SDS/H2O reverse micelles. Effects of solvent composition, acidity and temperature on the switch between heterolytic and homolytic dediazoniation mechanisms. Organic and Biomolecular Chemistry, 2010, 8, 5304.	1.5	5
36	Tuning the electrical conductivity of exfoliated graphite nanosheets nanofluids by surface functionalization. Soft Matter, 2017, 13, 3395-3403.	1.2	5

#	Article	IF	CITATIONS
37	Distribution of Tert-Butylhydroquinone in a Corn Oil/C12E6/Water Based Emulsion. Application of the Pseudophase Kinetic Model. , 2011, , 33-38.		1