Oscar Pinto

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184925/publications.pdf Version: 2024-02-01

OSCAD DINTO

#	Article	IF	CITATIONS
1	The kinetic origin of the Daumas-Hérold model for the Li-ion/graphite intercalation system. Electrochemistry Communications, 2018, 93, 133-137.	4.7	39
2	Effect of Temperature on The Kinetics of Electrochemical Insertion of Li-Ions into a Graphite Electrode Studied by Kinetic Monte Carlo. Journal of the Electrochemical Society, 2020, 167, 013533.	2.9	25
3	Kinetic Monte Carlo applied to the electrochemical study of the Li-ion graphite system. Electrochimica Acta, 2020, 331, 135439.	5.2	23
4	Grand Canonical Monte Carlo Study of Li Intercalation into Graphite. Journal of the Electrochemical Society, 2018, 165, A2019-A2025.	2.9	16
5	Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: finiteness of diffusion versus electrode kinetics. Journal of Solid State Electrochemistry, 2020, 24, 3279-3287.	2.5	16
6	Adsorption thermodynamics of a lattice–gas model with non-additive lateral interactions. Surface Science, 2008, 602, 1763-1769.	1.9	14
7	Criticality of the phase transition on stage two in a lattice-gas model of a graphite anode in a lithium-ion battery. Physical Chemistry Chemical Physics, 2017, 19, 23138-23145.	2.8	13
8	Microthermodynamic Interpretation of Fluid States from FTIR Measurements in Lipid Membranes: A Monte Carlo Study. Journal of Physical Chemistry B, 2014, 118, 10436-10443.	2.6	11
9	Adsorption thermodynamics of a lattice–gas model with non-additive lateral interactions on triangular and honeycomb lattices. Physica A: Statistical Mechanics and Its Applications, 2010, 389, 3456-3464.	2.6	9
10	Lattice-gas model of nonadditive interacting particles on nanotube bundles. Journal of Chemical Physics, 2011, 134, 064702.	3.0	8
11	Computer simulation of adsorption on nanoparticles: The case of attractive interactions. Physical Review E, 2012, 86, 061602.	2.1	8
12	The adsorption of a mixture of particles with non-additive interactions: a Monte Carlo study. Physical Chemistry Chemical Physics, 2015, 17, 3050-3058.	2.8	8
13	Monomolecular adsorption on nanoparticles with repulsive interactions: a Monte Carlo study. Physical Chemistry Chemical Physics, 2016, 18, 14610-14618.	2.8	8
14	Phase diagrams for the adsorption of monomers with non-additive interactions. Surface Science, 2016, 651, 62-69.	1.9	8
15	Electrosorption of a modified electrode in the vicinity of phase transition: A Monte Carlo study. Applied Surface Science, 2018, 433, 705-712.	6.1	7
16	Electrochemical behavior of a typical redox mediator on a modified electrode surface: Experiment and computer simulations. Surface Science, 2017, 658, 15-21.	1.9	6
17	Quasi-chemical approach for adsorption of mixtures with non-additive lateral interactions. Applied Surface Science, 2017, 392, 1088-1096.	6.1	6
18	Fractional and integer stages of lithium ion–graphite systems: the role of electrostatic and elastic contributions. Physical Chemistry Chemical Physics, 2020, 22, 16174-16183.	2.8	5

Oscar Pinto

#	Article	IF	CITATIONS
19	Statistical thermodynamics of straight rigid rods with nonadditive lateral interactions: Theory and Monte Carlo simulations. Physical Review E, 2011, 84, 061142.	2.1	4
20	Computer simulation and detailed mean-field approximation applied to adsorption on nanoparticles. Physical Review E, 2013, 88, 062407.	2.1	4
21	Electrosorption of a repulsive binary mixture on modified electrodes. Surface Science, 2020, 695, 121587.	1.9	4
22	Interaction of semiochemicals with model lipid membranes: A biophysical approach. Colloids and Surfaces B: Biointerfaces, 2018, 161, 413-419.	5.0	3
23	Simulation of selective thermodynamic deposition in nanoholes. Physical Chemistry Chemical Physics, 2017, 19, 1601-1609.	2.8	2
24	Addressing the surface coverage of Au nano-agglomerates and the electrochemical properties of modified carbon paste electrodes: Experimental and theoretical studies on ascorbic acid oxidation. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111585.	5.0	2
25	Configurational entropy of systems with non-additive lateral interactions. Physica A: Statistical Mechanics and Its Applications, 2012, 391, 6390-6398.	2.6	1
26	Mean field approach applied to surface deposition on a modified electrode. Physical Chemistry Chemical Physics, 2021, 23, 20247-20254.	2.8	1
27	Structural surface and thermodynamics analysis of nanoparticles with defects. Physical Chemistry Chemical Physics, 2020, 22, 23148-23157.	2.8	0
28	Theoretical approach to energy levels applied to modified surfaces. Physical Chemistry Chemical Physics, 2022, , .	2.8	0