
Shu-Fen Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184816/publications.pdf Version: 2024-02-01

SHILFEN HIL

#	Article	IF	CITATIONS
1	Super Broadband Near-Infrared Phosphors with High Radiant Flux as Future Light Sources for Spectroscopy Applications. ACS Energy Letters, 2018, 3, 2679-2684.	8.8	286
2	A low-temperature co-precipitation approach to synthesize fluoride phosphors K ₂ MF ₆ :Mn ⁴⁺ (M = Ge, Si) for white LED applications. Journal of Materials Chemistry C, 2015, 3, 1655-1660.	2.7	182
3	Highly Stable Red Oxynitride β-SiAlON:Pr ³⁺ Phosphor for Light-Emitting Diodes. Chemistry of Materials, 2011, 23, 3698-3705.	3.2	171
4	Controlling The Activator Site To Tune Europium Valence in Oxyfluoride Phosphors. Chemistry of Materials, 2012, 24, 2220-2227.	3.2	164
5	Heterostructure of Si and CoSe ₂ : A Promising Photocathode Based on a Nonâ€noble Metal Catalyst for Photoelectrochemical Hydrogen Evolution. Angewandte Chemie - International Edition, 2015, 54, 6211-6216.	7.2	134
6	An efficient multi-doping strategy to enhance Li-ion conductivity in the garnet-type solid electrolyte Li ₇ La ₃ Zr ₂ O ₁₂ . Journal of Materials Chemistry A, 2019, 7, 8589-8601.	5.2	124
7	Ultra-high-efficiency near-infrared Ga ₂ O ₃ :Cr ³⁺ phosphor and controlling of phytochrome. Journal of Materials Chemistry C, 2020, 8, 11013-11017.	2.7	111
8	[INVITED] Near-infrared phosphors and their full potential: A review on practical applications and future perspectives. Journal of Luminescence, 2020, 219, 116944.	1.5	105
9	Near-ultraviolet excitable orange-yellow Sr3(Al2O5)Cl2:Eu2+ phosphor for potential application in light-emitting diodes. Applied Physics Letters, 2008, 93, .	1.5	103
10	Flower-like ZnCo2O4 nanowires: toward a high-performance anode material for Li-ion batteries. RSC Advances, 2013, 3, 20143.	1.7	82
11	Combinatorial chemistry approach to searching phosphors for white light-emitting diodes in (Gd-Y-Bi-Eu)VO4 quaternary system. Journal of Materials Chemistry, 2011, 21, 3677.	6.7	73
12	An integrated cobalt disulfide (CoS ₂) co-catalyst passivation layer on silicon microwires for photoelectrochemical hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 23466-23476.	5.2	68
13	Ameliorating Interfacial Ionic Transportation in All-Solid-State Li-Ion Batteries with Interlayer Modifications. ACS Energy Letters, 2018, 3, 2775-2795.	8.8	66
14	Interfacial chemistry in anode-free batteries: challenges and strategies. Journal of Materials Chemistry A, 2021, 9, 7396-7406.	5.2	65
15	Ultra-Broadband Phosphors Converted Near-Infrared Light Emitting Diode with Efficient Radiant Power for Spectroscopy Applications. ACS Photonics, 2019, 6, 3215-3224.	3.2	64
16	Interface Between Solid-State Electrolytes and Li-Metal Anodes: Issues, Materials, and Processing Routes. ACS Applied Materials & Interfaces, 2020, 12, 47181-47196.	4.0	62
17	Efficient energy storage capabilities promoted by hierarchical MnCo2O4 nanowire-based architectures. RSC Advances, 2014, 4, 17230.	1.7	60
18	Silicon microwire arrays decorated with amorphous heterometal-doped molybdenum sulfide for water photoelectrolysis. Nano Energy, 2017, 32, 422-432.	8.2	58

Sни-Fen Hu

#	Article	IF	CITATIONS
19	Cuboid-Size-Controlled Color-Tunable Eu-Doped Alkali–Lithosilicate Phosphors. Chemistry of Materials, 2020, 32, 1748-1759.	3.2	56
20	All-Solid-State Li-Ion Battery Using Li _{1.5} Al _{0.5} Ge _{1.5} (PO ₄) ₃ As Electrolyte Without Polymer Interfacial Adhesion. Journal of Physical Chemistry C, 2018, 122, 14383-14389.	1.5	50
21	CoSe ₂ Embedded in C ₃ N ₄ : An Efficient Photocathode for Photoelectrochemical Water Splitting. ACS Applied Materials & Interfaces, 2016, 8, 26690-26696.	4.0	48
22	Multi-Site Cation Control of Ultra-Broadband Near-Infrared Phosphors for Application in Light-Emitting Diodes. Inorganic Chemistry, 2020, 59, 15101-15110.	1.9	42
23	Thermally Stable and Deep Red Luminescence of Sr _{1–<i>x</i>} Ba _{<i>x</i>} [Mg ₂ Al ₂ N ₄]:Eu ^{ (<i>x</i> = 0–1) Phosphors for Solid State and Agricultural Lighting Applications. ACS Applied Materials &: Interfaces. 2020. 12. 23165-23171.}	2+	42
24	Phosphorous-doped molybdenum disulfide anchored on silicon as an efficient catalyst for photoelectrochemical hydrogen generation. Applied Catalysis B: Environmental, 2020, 263, 118259.	10.8	40
25	CdSe/ZnS QD@CNT nanocomposite photocathode for improvement on charge overpotential in photoelectrochemical Li-O2 batteries. Chemical Engineering Journal, 2018, 349, 235-240.	6.6	38
26	Improvement efficiency of a dye-sensitized solar cell using Eu3+ modified TiO2 nanoparticles as a secondary layer electrode. Journal of Materials Chemistry, 2010, 20, 6505.	6.7	37
27	Spinel Zinc Cobalt Oxide (ZnCo ₂ O ₄) Porous Nanorods as a Cathode Material for Highly Durable Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2020, 12, 17353-17363.	4.0	37
28	Chitosan-Modified Stable Colloidal Gold Nanostars for the Photothermolysis of Cancer Cells. Journal of Physical Chemistry C, 2013, 117, 2396-2410.	1.5	36
29	Comparative Study of Li–CO ₂ and Na–CO ₂ Batteries with Ru@CNT as a Cathode Catalyst. ACS Applied Materials & Interfaces, 2021, 13, 480-490.	4.0	35
30	High specific capacity retention of graphene/silicon nanosized sandwich structure fabricated by continuous electron beam evaporation as anode for lithium-ion batteries. Electrochimica Acta, 2015, 165, 166-172.	2.6	34
31	Ag–Si artificial microflowers for plasmon-enhanced solar water splitting. Chemical Communications, 2015, 51, 549-552.	2.2	33
32	High-Performance NaK ₂ Li[Li ₃ SiO ₄] ₄ :Eu Green Phosphor for Backlighting Light-Emitting Diodes. Chemistry of Materials, 2021, 33, 1893-1899.	3.2	31
33	Improvement of lithium anode deterioration for ameliorating cyclabilities of non-aqueous Li–CO ₂ batteries. Nanoscale, 2020, 12, 8385-8396.	2.8	29
34	Na–CO2 battery with NASICON-structured solid-state electrolyte. Nano Energy, 2021, 85, 105972.	8.2	29
35	Amorphous Phosphorus-Doped Cobalt Sulfide Modified on Silicon Pyramids for Efficient Solar Water Reduction. ACS Applied Materials & Interfaces, 2018, 10, 37142-37149.	4.0	27
36	High-performance Na–CO ₂ batteries with ZnCo ₂ O ₄ @CNT as the catalyst. Journal of Materials Chemistry A, 2020, 8, 23974-23982.	5.2	25

Shu-Fen Hu

#	Article	IF	CITATIONS
37	A heteroelectrode structure for solar water splitting: integrated cobalt ditelluride across a TiO ₂ -passivated silicon microwire array. Catalysis Science and Technology, 2017, 7, 1488-1496.	2.1	24
38	Curtailing the Overpotential of Li–CO 2 Batteries with Shape ontrolled Cu 2 O as Cathode: Effect of Illuminating the Cathode. ChemSusChem, 2020, 13, 2719-2725.	3.6	24
39	Enticing applications of <scp>nearâ€infrared</scp> phosphors: Review and future perspectives. Journal of the Chinese Chemical Society, 2021, 68, 206-215.	0.8	24
40	Effective Ru/CNT Cathode for Rechargeable Solid-State Li–CO ₂ Batteries. ACS Applied Materials & Interfaces, 2021, 13, 44266-44273.	4.0	24
41	Molybdenum Tungsten Disulfide with a Large Number of Sulfur Vacancies and Electronic Unoccupied States on Silicon Micropillars for Solar Hydrogen Evolution. ACS Applied Materials & Interfaces, 2020, 12, 54671-54682.	4.0	23
42	Wide Range pH-Tolerable Silicon@Pyrite Cobalt Dichalcogenide Microwire Array Photoelectrodes for Solar Hydrogen Evolution. ACS Applied Materials & amp; Interfaces, 2016, 8, 5400-5407.	4.0	22
43	Matchmaker of Marriage between a Li Metal Anode and NASICON-Structured Solid-State Electrolyte: Plastic Crystal Electrolyte and Three-Dimensional Host Structure. ACS Applied Materials & Interfaces, 2020, 12, 44754-44761.	4.0	22
44	Highly Efficient Photoelectrochemical Hydrogen Generation Reaction Using Tungsten Phosphosulfide Nanosheets. ACS Applied Materials & Interfaces, 2018, 10, 17280-17286.	4.0	19
45	Luminescence and density functional theory (DFT) calculation of undoped nitridosilicate phosphors for light-emitting diodes. Journal of Materials Chemistry, 2012, 22, 5828.	6.7	17
46	Comprehensive view on recent developments in hydrogen evolution using MoS ₂ on a Si photocathode: from electronic to electrochemical aspects. Journal of Materials Chemistry A, 2021, 9, 3767-3785.	5.2	14
47	Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li–Metal Anode. ACS Applied Materials & Interfaces, 2021, 13, 56181-56190.	4.0	13
48	A rare earth-free GaZnON phosphor prepared by combustion for white light-emitting diodes. Journal of Materials Chemistry C, 2015, 3, 1473-1479.	2.7	12
49	Revealing the absence of carbon in aprotic Li–CO ₂ batteries: a mechanism study toward CO ₂ reduction under a pure CO ₂ environment. Journal of Materials Chemistry A, 2022, 10, 3460-3468.	5.2	12
50	Capturing carbon dioxide in Na– <scp>CO₂</scp> batteries: A route for green energy. Journal of the Chinese Chemical Society, 2021, 68, 421-428.	0.8	10
51	Molybdenum Disulfide/Tin Disulfide Ultrathin Nanosheets as Cathodes for Sodium–Carbon Dioxide Batteries. ACS Applied Materials & Interfaces, 2022, 14, 5834-5842.	4.0	10
52	Cd-ZnGeON solid solution: the effect of local electronic environment on the photocatalytic water cleavage ability. Journal of Materials Chemistry A, 2013, 1, 7422.	5.2	9
53	<i>In Situ</i> / <i>Operando</i> Methods of Characterizing All-Solid-State Li-Ion Batteries: Understanding Li-Ion Transport during Cycle. Journal of Physical Chemistry C, 2021, 125, 16921-16937.	1.5	9
54	Vertically-aligned graphene nanowalls grown via plasma-enhanced chemical vapor deposition as a binder-free cathode in Li–O ₂ batteries. Nanotechnology, 2018, 29, 505401.	1.3	8

Sни-Fen Hu

#	Article	IF	CITATIONS
55	Optimizing the Lithium Phosphorus Oxynitride Protective Layer Thickness on Lowâ€Grade Composite Siâ€Based Anodes for Lithiumâ€ion Batteries. ChemistrySelect, 2018, 3, 729-735.	0.7	7
56	The substitution of the platinum counter electrode in a plasmonic photoelectrochemical system with near-infrared absorption for solar water splitting. RSC Advances, 2016, 6, 103160-103168.	1.7	5
57	Preparation and Characterization of Ni or Co/Cu Multilayer Nanowires. Journal of the Chinese Chemical Society, 2010, 57, 888-891.	0.8	4
58	Na@C composite anode for a stable Na NZSP interface in solid-state Na–CO2 battery. Journal of Alloys and Compounds, 2022, 922, 166123.	2.8	3
59	Synthesis and characterization of long gold nanorods. IEEJ Transactions on Electrical and Electronic Engineering, 2007, 2, 468-472.	0.8	2
60	Halideâ€type Liâ€ion conductors: Future options for highâ€voltage allâ€solidâ€state batteries. Journal of the Chinese Chemical Society, 2022, 69, 1233-1241.	0.8	2
61	Xâ€ray Absorption Spectroscopy Approaches to Electronic State and Coordination Type of Lithium Phosphorus Oxynitride Thin Films. Journal of the Chinese Chemical Society, 2012, 59, 1270-1274.	0.8	0
62	Status of women in physics in China-Taipei from the view of quantity and quality. , 2013, , .		0
63	Current developments for Taiwanese women in physics. AIP Conference Proceedings, 2015, , .	0.3	0
64	Current status of women in physics: A report from the Physical Society located in Taipei. AIP Conference Proceedings, 2019, , .	0.3	0