Rose Amal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184657/publications.pdf

Version: 2024-02-01

496 papers 36,172 citations

2098 100 h-index 161 g-index

506 all docs 506
does citations

506 times ranked

35854 citing authors

#	Article	IF	CITATIONS
1	Wafer-scale quasi-layered tungstate-doped polypyrrole film with high volumetric capacitance. Nano Research, 2023, 16, 4895-4900.	5.8	3
2	Recent advances in flexible batteries: From materials to applications. Nano Research, 2023, 16, 4821-4854.	5. 8	37
3	Understanding the activity and stability of flame-made Co3O4 spinels: A route towards the scalable production of highly performing OER electrocatalysts. Chemical Engineering Journal, 2022, 429, 132180.	6.6	56
4	Highly Selective Metalâ€Free Electrochemical Production of Hydrogen Peroxide on Functionalized Vertical Graphene Edges. Small, 2022, 18, e2105082.	5.2	20
5	Engineering Multidefects on Ce <i></i> O _{2â^'} <i></i> Nanocomposites for the Catalytic Ozonation Reaction. Small, 2022, 18, e2103530.	5.2	6
6	A green hydrogen credit framework for international green hydrogen trading towards a carbon neutral future. International Journal of Hydrogen Energy, 2022, 47, 728-734.	3.8	68
7	Modulating catalytic oxygen activation over Pt–TiO ₂ /SiO ₂ catalysts by defect engineering of a TiO ₂ /SiO ₂ support. Catalysis Science and Technology, 2022, 12, 1049-1059.	2.1	6
8	Atomic Co decorated free-standing graphene electrode assembly for efficient hydrogen peroxide production in acid. Energy and Environmental Science, 2022, 15, 1172-1182.	15.6	37
9	Facet-dependent carrier dynamics of cuprous oxide regulating the photocatalytic hydrogen generation. Materials Advances, 2022, 3, 2200-2212.	2.6	15
10	Introduction to CO ₂ capture, utilization and storage (CCUS). Reaction Chemistry and Engineering, 2022, 7, 487-489.	1.9	8
11	Impurity Tolerance of Unsaturated Ni-N-C Active Sites for Practical Electrochemical CO ₂ Reduction. ACS Energy Letters, 2022, 7, 920-928.	8.8	47
12	Disulfiram-loaded metal organic framework for precision cancer treatment via ultrasensitive tumor microenvironment-responsive copper chelation and radical generation. Journal of Colloid and Interface Science, 2022, 615, 517-526.	5.0	7
13	Highly efficient and selective electrocatalytic hydrogen peroxide production on Co-O-C active centers on graphene oxide. Communications Chemistry, 2022, 5, .	2.0	33
14	Facet-dependent spatial charge separation with rational cocatalyst deposition on BiVO4. Materials Today Energy, 2022, 26, 100986.	2.5	6
15	Reconstructing Cu Nanoparticle Supported on Vertical Graphene Surfaces via Electrochemical Treatment to Tune the Selectivity of CO ₂ Reduction toward Valuable Products. ACS Catalysis, 2022, 12, 4792-4805.	5 . 5	24
16	Electronic Structure Engineering of Singleâ€Atom Ru Sites via Co–N4 Sites for Bifunctional pHâ€Universal Water Splitting. Advanced Materials, 2022, 34, e2110103.	11.1	199
17	From Stochastic Selfâ€Assembly of Nanoparticles to Nanostructured (Photo)Electrocatalysts for Renewable Powerâ€toâ€X Applications via Scalable Flame Synthesis. Advanced Functional Materials, 2022, 32, .	7.8	12
18	Two Steps Back, One Leap Forward: Synergistic Energy Conversion in Plasmonic and Plasma Catalysis. ACS Energy Letters, 2022, 7, 300-309.	8.8	7

#	Article	IF	CITATIONS
19	Identifying Key Design Criteria for Large-Scale Photocatalytic Hydrogen Generation from Engineering and Economic Perspectives. ACS ES&T Engineering, 2022, 2, 1130-1143.	3.7	11
20	Twoâ€Dimensional Ultraâ€Thin Nanosheets with Extraordinarily High Drug Loading and Long Blood Circulation for Cancer Therapy. Small, 2022, 18, e2200299.	5.2	24
21	Modulating Pt-O-Pt atomic clusters with isolated cobalt atoms for enhanced hydrogen evolution catalysis. Nature Communications, 2022, 13, 2430.	5.8	98
22	Shipping the sunshine: An open-source model for costing renewable hydrogen transport from Australia. International Journal of Hydrogen Energy, 2022, 47, 20362-20377.	3.8	32
23	Engineering a Kesteriteâ€Based Photocathode for Photoelectrochemical Ammonia Synthesis from NO <i>_x</i> Reduction. Advanced Materials, 2022, 34, .	11.1	17
24	Paving the way to ambient pressure photothermal methanol synthesis. Chem Catalysis, 2022, 2, 937-939.	2.9	0
25	Photo-electrochemical oxidation herbicides removal in stormwater: Degradation mechanism and pathway investigation. Journal of Hazardous Materials, 2022, 436, 129239.	6.5	10
26	Promoting low-temperature methanol production over mixed oxide supported Cu catalysts: Coupling ceria-promotion and photo-activation. Applied Catalysis B: Environmental, 2022, 315, 121599.	10.8	8
27	Tuning the Coordination Structure of Cuï£įNï£įC Single Atom Catalysts for Simultaneous Electrochemical Reduction of CO ₂ and NO ₃ [–] to Urea. Advanced Energy Materials, 2022, 12, .	10.2	98
28	Pt Single Atom Electrocatalysts at Graphene Edges for Efficient Alkaline Hydrogen Evolution. Advanced Functional Materials, 2022, 32, .	7.8	38
29	Nanoscale TiO ₂ Coatings Improve the Stability of an Earth-Abundant Cobalt Oxide Catalyst during Acidic Water Oxidation. ACS Applied Materials & Interfaces, 2022, 14, 33130-33140.	4.0	13
30	Integrating Lowâ€Cost Earthâ€Abundant Coâ€Catalysts with Encapsulated Perovskite Solar Cells for Efficient and Stable Overall Solar Water Splitting. Advanced Functional Materials, 2021, 31, 2008245.	7.8	43
31	Plasmacatalytic bubbles using CeO2 for organic pollutant degradation. Chemical Engineering Journal, 2021, 403, 126413.	6.6	79
32	Mixedâ€Metal MOFâ€74 Templated Catalysts for Efficient Carbon Dioxide Capture and Methanation. Advanced Functional Materials, 2021, 31, 2007624.	7.8	65
33	Emerging material engineering strategies for amplifying photothermal heterogeneous CO2 catalysis. Journal of Energy Chemistry, 2021, 59, 108-125.	7.1	46
34	Microstructural Engineering of Cathode Materials for Advanced Zincâ€lon Aqueous Batteries. Advanced Science, 2021, 8, 2002722.	5.6	58
35	Recent advances and the design criteria of metal sulfide photocathodes and photoanodes for photoelectrocatalysis. Journal of Materials Chemistry A, 2021, 9, 20277-20319.	5.2	53
36	Nitrate reduction to ammonium: from CuO defect engineering to waste NO _x -to-NH ₃ economic feasibility. Energy and Environmental Science, 2021, 14, 3588-3598.	15.6	161

#	Article	IF	Citations
37	Altering the influence of ceria oxygen vacancies in Ni/Ce _x Si _y O ₂ for photothermal CO ₂ methanation. Catalysis Science and Technology, 2021, 11, 5297-5309.	2.1	17
38	Advancing photoreforming of organics: highlights on photocatalyst and system designs for selective oxidation reactions. Energy and Environmental Science, 2021, 14, 1140-1175.	15.6	128
39	A hybrid plasma electrocatalytic process for sustainable ammonia production. Energy and Environmental Science, 2021, 14, 865-872.	15.6	164
40	In vitro coronal protein signatures and biological impact of silver nanoparticles synthesized with different natural polymers as capping agents. Nanoscale Advances, 2021, 3, 4424-4439.	2.2	4
41	Carbon-supported layered double hydroxide nanodots for efficient oxygen evolution: Active site identification and activity enhancement. Nano Research, 2021, 14, 3329-3336.	5 . 8	14
42	Stormwater herbicides removal with a solar-driven advanced oxidation process: A feasibility investigation. Water Research, 2021, 190, 116783.	5. 3	16
43	Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction. Advanced Energy Materials, 2021, 11, 2100303.	10.2	61
44	Doping-Mediated Metal–Support Interaction Promotion toward Light-Assisted Methanol Production over Cu/ZnO/Al ₂ O ₃ . ACS Catalysis, 2021, 11, 5818-5828.	5 . 5	16
45	Understanding the Role of Vanadium Vacancies in BiVO ₄ for Efficient Photoelectrochemical Water Oxidation. Chemistry of Materials, 2021, 33, 3553-3565.	3. 2	54
46	Antibacterial Activity of Reduced Graphene Oxide. Journal of Nanomaterials, 2021, 2021, 1-10.	1.5	18
47	Oxygen Reduction Reaction: Electronically Modified Atomic Sites Within a Multicomponent Co/Cu Composite for Efficient Oxygen Electroreduction (Adv. Energy Mater. 17/2021). Advanced Energy Materials, 2021, 11, 2170067.	10.2	2
48	Ligandâ€Promoted Cooperative Electrochemical Oxidation of Bioâ€Alcohol on Distorted Cobalt Hydroxides for Bioâ€Hydrogen Extraction. ChemSusChem, 2021, 14, 2612-2620.	3.6	6
49	Accelerating Electronâ€Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO ₂ Reduction. Small, 2021, 17, e2100496.	5.2	40
50	A framework for assessing economics of blue hydrogen production from steam methane reforming using carbon capture storage & amp; utilisation. International Journal of Hydrogen Energy, 2021, 46, 22685-22706.	3.8	110
51	Liquid Crystal-Mediated 3D Printing Process to Fabricate Nano-Ordered Layered Structures. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28627-28638.	4.0	7
52	Designing optimal integrated electricity supply configurations for renewable hydrogen generation in Australia. IScience, 2021, 24, 102539.	1.9	28
53	Oxygen Nucleation of MoS ₂ Nanosheet Thin Film Supercapacitor Electrodes for Enhanced Electrochemical Energy Storage. ChemSusChem, 2021, 14, 2882-2891.	3.6	3
54	Plasma-Induced Catalyst Support Defects for the Photothermal Methanation of Carbon Dioxide. Materials, 2021, 14, 4195.	1.3	11

#	Article	IF	CITATIONS
55	Designing Undercoordinated Ni–N _{<i>x</i>} and Fe–N _{<i>x</i>} on Holey Graphene for Electrochemical CO ₂ Conversion to Syngas. ACS Nano, 2021, 15, 12006-12018.	7.3	68
56	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi ₂ WO ₆ . Small, 2021, 17, e2102023.	5.2	14
57	Gas Transition: Renewable Hydrogen's Future in Eastern Australia's Energy Networks. Energies, 2021, 14, 3968.	1.6	7
58	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the d â€Band Center via Local Coordination Tuning. Angewandte Chemie, 2021, 133, 22082-22088.	1.6	4
59	Intrinsic ORR Activity Enhancement of Pt Atomic Sites by Engineering the <i>d</i> â€Band Center via Local Coordination Tuning. Angewandte Chemie - International Edition, 2021, 60, 21911-21917.	7.2	132
60	Manipulating the Fate of Charge Carriers with Tungsten Concentration: Enhancing Photoelectrochemical Water Oxidation of Bi ₂ WO ₆ (Small 35/2021). Small, 2021, 17, 2170183.	5.2	2
61	Anchoring Sites Engineering in Singleâ€Atom Catalysts for Highly Efficient Electrochemical Energy Conversion Reactions. Advanced Materials, 2021, 33, e2102801.	11.1	64
62	ZnIn ₂ S ₄ â€Based Photocatalysts for Energy and Environmental Applications. Small Methods, 2021, 5, e2100887.	4.6	153
63	Enhanced graphitic domains of unreduced graphene oxide and the interplay of hydration behaviour and catalytic activity. Materials Today, 2021, 50, 44-54.	8.3	27
64	Nanofluidic voidless electrode for electrochemical capacitance enhancement in gel electrolyte. Nature Communications, 2021, 12, 5515.	5.8	13
65	Photoenhanced CO2 methanation over La2O3 promoted Co/TiO2 catalysts. Applied Catalysis B: Environmental, 2021, 294, 120248.	10.8	21
66	Biocatalytic micromixer coated with enzyme-MOF thin film for CO2 conversion to formic acid. Chemical Engineering Journal, 2021, 426, 130856.	6.6	34
67	Two-birds-one-stone: multifunctional supercapacitors beyond traditional energy storage. Energy and Environmental Science, 2021, 14, 1854-1896.	15.6	252
68	Synergistic Cyanamide Functionalization and Charge-Induced Activation of Nickel/Carbon Nitride for Enhanced Selective Photoreforming of Ethanol. ACS Applied Materials & Interfaces, 2021, 13, 49916-49926.	4.0	12
69	Surface Reconstruction Enabled Efficient Hydrogen Generation on a Cobalt–Iron Phosphate Electrocatalyst in Neutral Water. ACS Applied Materials & Therfaces, 2021, 13, 53798-53809.	4.0	14
70	Nanostructured βâ€Bi ₂ O ₃ Fractals on Carbon Fibers for Highly Selective CO ₂ Electroreduction to Formate. Advanced Functional Materials, 2020, 30, 1906478.	7.8	104
71	From passivation to activation – tunable nickel/nickel oxide for hydrogen evolution electrocatalysis. Chemical Communications, 2020, 56, 1709-1712.	2.2	35
72	<i>In Situ</i> Sulfurized Carbon-Confined Cobalt for Long-Life Mg/S Batteries. ACS Applied Energy Materials, 2020, 3, 2516-2525.	2.5	23

#	Article	IF	CITATIONS
73	Low-Temperature CO ₂ Methanation: Synergistic Effects in Plasma-Ni Hybrid Catalytic System. ACS Sustainable Chemistry and Engineering, 2020, 8, 1888-1898.	3.2	54
74	Heritable nanosilver resistance in priority pathogen: a unique genetic adaptation and comparison with ionic silver and antibiotics. Nanoscale, 2020, 12, 2384-2392.	2.8	29
75	Photocatalytic and Photoelectrochemical Systems: Similarities and Differences. Advanced Materials, 2020, 32, e1904717.	11.1	213
76	Catalytic Metal Foam by Chemical Melting and Sintering of Liquid Metal Nanoparticles. Advanced Functional Materials, 2020, 30, 1907879.	7.8	53
77	Tungsten Oxide/Carbide Surface Heterojunction Catalyst with High Hydrogen Evolution Activity. ACS Energy Letters, 2020, 5, 3560-3568.	8.8	70
78	Heteroatom-doped carbon catalysts for zinc–air batteries: progress, mechanism, and opportunities. Energy and Environmental Science, 2020, 13, 4536-4563.	15.6	209
79	Dynamic single-site polysulfide immobilization in long-range disorder Cu-MOFs. Chemical Communications, 2020, 56, 10074-10077.	2.2	1
80	Unlocking the potential of the formate pathway in the photo-assisted Sabatier reaction. Nature Catalysis, 2020, 3, 1034-1043.	16.1	90
81	Opportunities and Challenges for Renewable Power-to-X. ACS Energy Letters, 2020, 5, 3843-3847.	8.8	126
82	Valence Alignment of Mixed Ni–Fe Hydroxide Electrocatalysts through Preferential Templating on Graphene Edges for Enhanced Oxygen Evolution. ACS Nano, 2020, 14, 11327-11340.	7.3	42
83	Transforming active sites in nickel–nitrogen–carbon catalysts for efficient electrochemical CO2 reduction to CO. Nano Energy, 2020, 78, 105213.	8.2	69
84	Vertical graphene nano-antennas for solar-to-hydrogen energy conversion. Solar Energy, 2020, 208, 379-387.	2.9	13
85	Direct insights into the role of epoxy groups on cobalt sites for acidic H2O2 production. Nature Communications, 2020, 11, 4181.	5.8	204
86	Enhanced Electrochemical CO ₂ Reduction of Cu@Cu <i>_x</i> O Nanoparticles Decorated on 3D Vertical Graphene with Intrinsic sp ³ â€type Defect. Advanced Functional Materials, 2020, 30, 1910118.	7.8	54
87	Bi–Sn Catalytic Foam Governed by Nanometallurgy of Liquid Metals. Nano Letters, 2020, 20, 4403-4409.	4.5	46
88	Z-Schematic Solar Water Splitting Using Fine Particles of H ₂ -Evolving (CuGa) _{0.5} ZnS ₂ Photocatalyst Prepared by a Flux Method with Chloride Salts. ACS Applied Energy Materials, 2020, 3, 5684-5692.	2.5	22
89	Multifunctional nanostructures of Au–Bi ₂ O ₃ fractals for CO ₂ reduction and optical sensing. Journal of Materials Chemistry A, 2020, 8, 11233-11245.	5.2	25
90	Promising hollow multi-shelled structures: discovering the temporal-spatial ordering. National Science Review, 2020, 7, 1763-1764.	4.6	3

#	Article	IF	Citations
91	Uncovering Atomicâ€Scale Stability and Reactivity in Engineered Zinc Oxide Electrocatalysts for Controllable Syngas Production. Advanced Energy Materials, 2020, 10, 2001381.	10.2	51
92	Balancing the crystallinity and specific surface area of bismuth tungstate for photocatalytic water oxidation. Molecular Catalysis, 2020, 487, 110887.	1.0	5
93	Preparation of Bi-based photocatalysts in the form of powdered particles and thin films: a review. Journal of Materials Chemistry A, 2020, 8, 15302-15318.	5.2	76
94	Synergistic ultraviolet and visible light photo-activation enables intensified low-temperature methanol synthesis over copper/zinc oxide/alumina. Nature Communications, 2020, 11, 1615.	5.8	84
95	Tunable Syngas Production through CO ₂ Electroreduction on Cobalt–Carbon Composite Electrocatalyst. ACS Applied Materials & Electrocatalyst.	4.0	79
96	Light-Enhanced CO ₂ Reduction to CH ₄ using Nonprecious Transition-Metal Catalysts. ACS Sustainable Chemistry and Engineering, 2020, 8, 5056-5066.	3.2	29
97	Harnessing the interplay of Fe–Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy, 2020, 71, 104597.	8.2	231
98	A pulse electrodeposited amorphous tunnel layer stabilises Cu ₂ O for efficient photoelectrochemical water splitting under visible-light irradiation. Journal of Materials Chemistry A, 2020, 8, 5638-5646.	5.2	78
99	Inducing Ni phyllosilicate formation over a carbon fiber support as a catalyst for the CO2 reforming of methane. Applied Catalysis A: General, 2020, 592, 117418.	2.2	20
100	Nanosilver Targets the Bacterial Cell Envelope: The Link with Generation of Reactive Oxygen Radicals. ACS Applied Materials & Envelope: The Link with Generation of Reactive Oxygen Radicals.	4.0	48
101	Silver-Based Plasmonic Catalysts for Carbon Dioxide Reduction. ACS Sustainable Chemistry and Engineering, 2020, 8, 1879-1887.	3.2	23
102	A Disquisition on the Active Sites of Heterogeneous Catalysts for Electrochemical Reduction of CO ₂ to Valueâ€Added Chemicals and Fuel. Advanced Energy Materials, 2020, 10, 1902106.	10.2	113
103	Inducing synergy in bimetallic RhNi catalysts for CO2 methanation by galvanic replacement. Applied Catalysis B: Environmental, 2020, 277, 119029.	10.8	41
104	Tuning the Selectivity of LaNiO3 Perovskites for CO2 Hydrogenation through Potassium Substitution. Catalysts, 2020, 10, 409.	1.6	20
105	Light soaking effect driven in porphyrin dye-sensitized solar cells using 1D TiO2 nanotube photoanodes. Sustainable Materials and Technologies, 2020, 24, e00165.	1.7	9
106	Techno-economic Analysis of Hydrogen Electrolysis from Off-Grid Stand-Alone Photovoltaics Incorporating Uncertainty Analysis. Cell Reports Physical Science, 2020, 1, 100209.	2.8	113
107	Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 2020, 49, 8584-8686.	18.7	610
108	3D Heterostructured Copper Electrode for Conversion of Carbon Dioxide to Alcohols at Low Overpotentials. Advanced Sustainable Systems, 2019, 3, 1800064.	2.7	37

#	Article	IF	CITATIONS
109	Cadmium sulfide Co-catalyst reveals the crystallinity impact of nickel oxide photocathode in photoelectrochemical water splitting. International Journal of Hydrogen Energy, 2019, 44, 20851-20856.	3.8	7
110	Unifying double flame spray pyrolysis with lanthanum doping to restrict cobalt–aluminate formation in Co/Al ₂ O ₃ catalysts for the dry reforming of methane. Catalysis Science and Technology, 2019, 9, 4970-4980.	2.1	23
111	Ternary MnO/CoMn alloy@N-doped graphitic composites derived from a bi-metallic pigment as bi-functional electrocatalysts. Journal of Materials Chemistry A, 2019, 7, 20649-20657.	5.2	33
112	The Dependence of Bi ₂ MoO ₆ Photocatalytic Water Oxidation Capability on Crystal Facet Engineering. ChemPhotoChem, 2019, 3, 1246-1253.	1.5	23
113	Refilling Nitrogen to Oxygen Vacancies in Ultrafine Tungsten Oxide Clusters for Superior Lithium Storage. Advanced Energy Materials, 2019, 9, 1902148.	10.2	48
114	Cooperative defect-enriched SiO2 for oxygen activation and organic dehydrogenation. Journal of Catalysis, 2019, 376, 168-179.	3.1	16
115	Asymmetrical Double Flame Spray Pyrolysis-Designed SiO2/Ce0.7Zr0.3O2 for the Dry Reforming of Methane. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25766-25777.	4.0	26
116	Modulating Activity through Defect Engineering of Tin Oxides for Electrochemical CO ₂ Reduction. Advanced Science, 2019, 6, 1900678.	5.6	92
117	Antipoisoning Nickel–Carbon Electrocatalyst for Practical Electrochemical CO ₂ Reduction to CO. ACS Applied Energy Materials, 2019, 2, 8002-8009.	2.5	45
118	Advantages of eutectic alloys for creating catalysts in the realm of nanotechnology-enabled metallurgy. Nature Communications, 2019, 10, 4645.	5.8	76
119	Machine Learning for Accelerated Discovery of Solar Photocatalysts. ACS Catalysis, 2019, 9, 11774-11787.	5.5	100
120	Plasma Treating Mixed Metal Oxides to Improve Oxidative Performance via Defect Generation. Materials, 2019, 12, 2756.	1.3	15
121	Highly cross-linked carbon sponge enables room-temperature long-life semi-liquid Na/polysulfide battery. Materials Today Energy, 2019, 14, 100342.	2.5	11
122	N,P Coâ€Coordinated Manganese Atoms in Mesoporous Carbon for Electrochemical Oxygen Reduction. Small, 2019, 15, e1804524.	5.2	76
123	Unlocking high-potential non-persistent radical chemistry for semi-aqueous redox batteries. Chemical Communications, 2019, 55, 2154-2157.	2.2	14
124	A Fully Reversible Water Electrolyzer Cell Made Up from FeCoNi (Oxy)hydroxide Atomic Layers. Advanced Energy Materials, 2019, 9, 1901312.	10.2	106
125	The Importance of the Interfacial Contact: Is Reduced Graphene Oxide Always an Enhancer in Photo(Electro)Catalytic Water Oxidation?. ACS Applied Materials & Samp; Interfaces, 2019, 11, 23125-23134.	4.0	34
126	Oxygen-Vacancy Engineering of Cerium-Oxide Nanoparticles for Antioxidant Activity. ACS Omega, 2019, 4, 9473-9479.	1.6	47

#	Article	IF	CITATIONS
127	Effect of Metalâ€Support Interactions in Mixed Co/Al Catalysts for Dry Reforming of Methane. ChemCatChem, 2019, 11, 3432-3440.	1.8	26
128	N,P co-coordinated Fe species embedded in carbon hollow spheres for oxygen electrocatalysis. Journal of Materials Chemistry A, 2019, 7, 14732-14742.	5.2	80
129	Hydrophilic tannic acid-modified WS ₂ nanosheets for enhanced polysulfide conversion in aqueous media. JPhys Energy, 2019, 1, 015005.	2.3	2
130	Solar Water Splitting under Neutral Conditions Using Zâ€Scheme Systems with Moâ€Doped BiVO ₄ as an O ₂ â€Evolving Photocatalyst. Energy Technology, 2019, 7, 1900358.	1.8	13
131	Versatile electrocatalytic processes realized by Ni, Co and Fe alloyed core coordinated carbon shells. Journal of Materials Chemistry A, 2019, 7, 12154-12165.	5.2	34
132	Spherical Murray-Type Assembly of Co–N–C Nanoparticles as a High-Performance Trifunctional Electrocatalyst. ACS Applied Materials & M	4.0	49
133	Light-Induced Synergistic Multidefect Sites on TiO ₂ /SiO ₂ Composites for Catalytic Dehydrogenation. ACS Catalysis, 2019, 9, 2674-2684.	5. 5	41
134	Promoting surface oxygen vacancies on ceria <i>via</i> light pretreatment to enhance catalytic ozonation. Catalysis Science and Technology, 2019, 9, 5979-5990.	2.1	29
135	Surface strategies for catalytic CO ₂ reduction: from two-dimensional materials to nanoclusters to single atoms. Chemical Society Reviews, 2019, 48, 5310-5349.	18.7	607
136	Ultrathin Feâ€Nâ€C Nanosheets Coordinated Feâ€Doped CoNi Alloy Nanoparticles for Electrochemical Water Splitting. Particle and Particle Systems Characterization, 2019, 36, 1800252.	1.2	21
137	Carbonâ€Based Metalâ€Free Catalysts for Key Reactions Involved in Energy Conversion and Storage. Advanced Materials, 2019, 31, e1801526.	11.1	273
138	Carbonâ€Based Metalâ€Free Catalysts for Electrocatalytic Reduction of Nitrogen for Synthesis of Ammonia at Ambient Conditions. Advanced Materials, 2019, 31, e1805367.	11.1	247
139	Recent advances in suppressing the photocorrosion of cuprous oxide for photocatalytic and photoelectrochemical energy conversion. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2019, 40, 191-211.	5.6	113
140	Experimental Results for Tailored Spectrum Splitting Metallic Nanofluids for c-Si, GaAs, and Ge Solar Cells. IEEE Journal of Photovoltaics, 2019, 9, 385-390.	1.5	28
141	Oxygen Electrocatalysis at Mn ^{III} â€"O <i>_x</i> â€"C Hybrid Heterojunction: An Electronic Synergy or Cooperative Catalysis?. ACS Applied Materials & Synergy or Cooperative Catalysis?. ACS Applied Materials & Synergy or Cooperative Catalysis?.	4.0	7
142	Plasmonic effects on CO2 reduction over bimetallic Ni-Au catalysts. Chemical Engineering Science, 2019, 194, 94-104.	1.9	42
143	Decorating platinum on nitrogen-doped graphene sheets: Control of the platinum particle size distribution for improved photocatalytic H2 generation. Chemical Engineering Science, 2019, 194, 85-93.	1.9	31
144	Improving the Photo-Oxidative Performance of Bi ₂ MoO ₆ by Harnessing the Synergy between Spatial Charge Separation and Rational Co-Catalyst Deposition. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 9342-9352.	4.0	44

#	Article	IF	Citations
145	In Situ Exsolution of Bimetallic Rh–Ni Nanoalloys: a Highly Efficient Catalyst for CO ₂ Methanation. ACS Applied Materials & Interfaces, 2018, 10, 16352-16357.	4.0	89
146	A Li-ion sulfur full cell with ambient resistant Al-Li alloy anode. Energy Storage Materials, 2018, 15, 209-217.	9.5	44
147	A dual-electrolyte system for photoelectrochemical hydrogen generation using CulnS2-In2O3-TiO2 nanotube array thin film. Science China Materials, 2018, 61, 895-904.	3.5	16
148	Transformation of Cuprous Oxide into Hollow Copper Sulfide Cubes for Photocatalytic Hydrogen Generation. Journal of Physical Chemistry C, 2018, 122, 14072-14081.	1.5	43
149	Nanosilver and the microbiological activity of the particulate solids versus the leached soluble silver. Nanotoxicology, 2018, 12, 263-273.	1.6	23
150	Tracking changes in organic matter during nitrification using fluorescence excitation–emission matrix spectroscopy coupled with parallel factor analysis (FEEM/PARAFAC). Journal of Environmental Chemical Engineering, 2018, 6, 1522-1528.	3.3	18
151	Ferrous ion as a reducing agent in the generation of antibiofilm nitric oxide from a copper-based catalytic system. Nitric Oxide - Biology and Chemistry, 2018, 75, 8-15.	1.2	3
152	Hierarchically Porous Network‣ike Ni/Co ₃ O ₄ : Noble Metalâ€Free Catalysts for Carbon Dioxide Methanation. Advanced Sustainable Systems, 2018, 2, 1700119.	2.7	30
153	Assessment of ozone and UV pre-oxidation processes for mitigating microbiologically accelerated monochloramine decay. Journal of Environmental Chemical Engineering, 2018, 6, 44-51.	3.3	3
154	Exploring the effects of heat and UV exposure on glycerol-based Ag-SiO2 nanofluids for PV/T applications. Renewable Energy, 2018, 120, 266-274.	4.3	55
155	Highly Selective Reduction of CO ₂ to Formate at Low Overpotentials Achieved by a Mesoporous Tin Oxide Electrocatalyst. ACS Sustainable Chemistry and Engineering, 2018, 6, 1670-1679.	3.2	96
156	Antimicrobial activity of T4 bacteriophage conjugated indium tin oxide surfaces. Journal of Colloid and Interface Science, 2018, 514, 227-233.	5.0	6
157	Core/Shell NiFe Nanoalloy with a Discrete Nâ€doped Graphitic Carbon Cover for Enhanced Water Oxidation. ChemElectroChem, 2018, 5, 732-736.	1.7	26
158	Impact of zinc on biologically mediated monochloramine decay in waters from a field based pilot scale drinking water distribution system. Chemical Engineering Journal, 2018, 339, 240-248.	6.6	10
159	Role of support in photothermal carbon dioxide hydrogenation catalysed by Ni/CexTiyO2. Progress in Natural Science: Materials International, 2018, 28, 168-177.	1.8	44
160	Layered conductive polymer-inorganic anion network for high-performance ultra-loading capacitive electrodes. Energy Storage Materials, 2018, 14, 90-99.	9.5	20
161	Solid-state NMR study of photocatalytic oxidation of acetaldehyde over the flame-made F-TiO2 catalyst. Applied Catalysis B: Environmental, 2018, 223, 16-21.	10.8	13
162	Revealing the key oxidative species generated by Pt-loaded metal oxides under dark and light conditions. Applied Catalysis B: Environmental, 2018, 223, 216-227.	10.8	25

#	Article	IF	CITATIONS
163	Promoting Catalytic Oxygen Activation by Localized Surface Plasmon Resonance: Effect of Visible Light Preâ€treatment and Bimetallic Interactions. ChemCatChem, 2018, 10, 287-295.	1.8	9
164	Polysulfide immobilization and conversion on a conductive polar MoC@MoOx material for lithium-sulfur batteries. Energy Storage Materials, 2018, 10, 56-61.	9.5	157
165	TiO2/porous adsorbents: Recent advances and novel applications. Journal of Hazardous Materials, 2018, 341, 404-423.	6.5	173
166	Pulsed Electrodeposition of Co3 O4 Nanocrystals on One-Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 889-889.	1.3	0
167	Single Atom and Nanoclustered Pt Catalysts for Selective CO ₂ Reduction. ACS Applied Energy Materials, 2018, 1, 6781-6789.	2.5	104
168	Copolymerization Approach to Improving Ru(II)-Complex/C ₃ N ₄ Hybrid Photocatalysts for Visible-Light CO ₂ Reduction. ACS Sustainable Chemistry and Engineering, 2018, 6, 15333-15340.	3.2	40
169	Electroreduction of CO ₂ to CO on a Mesoporous Carbon Catalyst with Progressively Removed Nitrogen Moieties. ACS Energy Letters, 2018, 3, 2292-2298.	8.8	129
170	A 2D Conductive Organic–Inorganic Hybrid with Extraordinary Volumetric Capacitance at Minimal Swelling. Advanced Materials, 2018, 30, e1800400.	11.1	34
171	Elucidating the impact of Ni and Co loading on the selectivity of bimetallic NiCo catalysts for dry reforming of methane. Chemical Engineering Journal, 2018, 352, 572-580.	6.6	144
172	Oxygen-deficient bismuth tungstate and bismuth oxide composite photoanode with improved photostability. Science Bulletin, 2018, 63, 990-996.	4.3	29
173	The Impact of La Doping on Dry Reforming Ni-Based Catalysts Loaded on FSP-Alumina. Topics in Catalysis, 2018, 61, 1842-1855.	1.3	20
174	Pulsed Electrodeposition of Co ₃ O ₄ Nanocrystals on Oneâ€Dimensional ZnO Scaffolds for Enhanced Electrochemical Water Oxidation. ChemPlusChem, 2018, 83, 934-940.	1.3	16
175	Construction of a Bi2MoO6:Bi2Mo3O12 heterojunction for efficient photocatalytic oxygen evolution. Chemical Engineering Journal, 2018, 353, 636-644.	6.6	56
176	Concentration-Mediated Band Gap Reduction of Bi ₂ MoO ₆ Photoanodes Prepared by Bi ³⁺ Cation Insertions into Anodized MoO ₃ Thin Films: Structural, Optical, and Photoelectrochemical Properties. ACS Applied Energy Materials, 2018, 1, 3955-3964.	2.5	14
177	A sea-change: manganese doped nickel/nickel oxide electrocatalysts for hydrogen generation from seawater. Energy and Environmental Science, 2018, 11, 1898-1910.	15.6	192
178	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie, 2018, 130, 13801-13805.	1.6	55
179	A comparison of carbon footprints of magnesium oxide and magnesium hydroxide produced from conventional processes. Journal of Cleaner Production, 2018, 202, 1035-1044.	4.6	27
180	Photocorrosion of Cuprous Oxide in Hydrogen Production: Rationalising Selfâ€Oxidation or Selfâ€Reduction. Angewandte Chemie - International Edition, 2018, 57, 13613-13617.	7.2	177

#	Article	IF	Citations
181	Pulsed electrodeposition of CdS on ZnO nanorods for highly sensitive photoelectrochemical sensing of copper (II) ions. Sustainable Materials and Technologies, 2018, 18, e00075.	1.7	22
182	Towards a reliable Li-metal-free LiNO ₃ -free Li-ion polysulphide full cell <i>via</i> parallel interface engineering. Energy and Environmental Science, 2018, 11, 2509-2520.	15.6	24
183	Multipronged Validation of Oxalate C–C Bond Cleavage Driven by Au-TiO ₂ Interfacial Charge Transfer Using Operando DRIFTS. ACS Catalysis, 2018, 8, 7158-7163.	5.5	8
184	Photo-driven synthesis of polymer-coated platinized ZnO nanoparticles with enhanced photoelectrochemical charge transportation. Journal of Materials Chemistry A, 2017, 5, 4568-4575.	5.2	16
185	Highly Selective Conversion of CO ₂ to CO Achieved by a Threeâ€Dimensional Porous Silver Electrocatalyst. ChemistrySelect, 2017, 2, 879-884.	0.7	51
186	Chloramine demand estimation using surrogate chemical and microbiological parameters. Journal of Environmental Sciences, 2017, 57, 1-7.	3.2	11
187	Light, Catalyst, Activation: Boosting Catalytic Oxygen Activation Using a Light Pretreatment Approach. ACS Catalysis, 2017, 7, 3644-3653.	5.5	20
188	Recent advances in ordered meso/macroporous metal oxides for heterogeneous catalysis: a review. Journal of Materials Chemistry A, 2017, 5, 8825-8846.	5.2	263
189	Surface engineered tin foil for electrocatalytic reduction of carbon dioxide to formate. Catalysis Science and Technology, 2017, 7, 2542-2550.	2.1	39
190	Tiny Particles with Big Impacts on Clean Future Energy. Particle and Particle Systems Characterization, 2017, 34, 1700102.	1.2	0
191	The controlled disassembly of mesostructured perovskites as an avenue to fabricating high performance nanohybrid catalysts. Nature Communications, 2017, 8, 15553.	5.8	65
192	A review on photo-thermal catalytic conversion of carbon dioxide. Green Energy and Environment, 2017, 2, 204-217.	4.7	153
193	Widespread and Indiscriminate Nanosilver Use: Genuine Potential for Microbial Resistance. ACS Nano, 2017, 11, 3438-3445.	7.3	77
194	Improving the photo-oxidative capability of BiOBr via crystal facet engineering. Journal of Materials Chemistry A, 2017, 5, 8117-8124.	5.2	163
195	Enhancing the Photoactivity of Faceted BiVO ₄ via Annealing in Oxygenâ€Deficient Condition. Particle and Particle Systems Characterization, 2017, 34, 1600290.	1.2	75
196	Developing a chloramine decay index to understand nitrification: A case study of two chloraminated drinking water distribution systems. Journal of Environmental Sciences, 2017, 57, 170-179.	3.2	16
197	T4 bacteriophage conjugated magnetic particles for E. coli capturing: Influence of bacteriophage loading, temperature and tryptone. Colloids and Surfaces B: Biointerfaces, 2017, 151, 47-57.	2.5	18
198	Reduced graphene oxide is not a universal promoter for photocatalytic activities of TiO 2. Journal of Materiomics, 2017, 3, 51-57.	2.8	12

#	Article	IF	Citations
199	Monolithic Integration of Anodic Molybdenum Oxide Pseudocapacitive Electrodes on Screenâ€Printed Silicon Solar Cells for Hybrid Energy Harvestingâ€Storage Systems. Advanced Energy Materials, 2017, 7, 1602325.	10.2	14
200	Liquid Hydrocarbon Production from CO ₂ : Recent Development in Metalâ€Based Electrocatalysis. ChemSusChem, 2017, 10, 4342-4358.	3.6	54
201	Platinum electrocatalysts with plasmonic nano-cores for photo-enhanced oxygen-reduction. Nano Energy, 2017, 41, 233-242.	8.2	41
202	Batteries: An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€lon Intercalation Battery (Adv. Energy Mater. 19/2017). Advanced Energy Materials, 2017, 7, .	10.2	1
203	Enhancing bimetallic synergy with light: the effect of UV light pre-treatment on catalytic oxygen activation by bimetallic Au–Pt nanoparticles on a TiO ₂ support. Catalysis Science and Technology, 2017, 7, 4792-4805.	2.1	24
204	Sensitization of Pt/TiO ₂ Using Plasmonic Au Nanoparticles for Hydrogen Evolution under Visible-Light Irradiation. ACS Applied Materials & Samp; Interfaces, 2017, 9, 30575-30582.	4.0	82
205	Nitrogen Doped Carbon Nanosheets Coupled Nickelâ€"Carbon Pyramid Arrays Toward Efficient Evolution of Hydrogen. Advanced Sustainable Systems, 2017, 1, 1700032.	2.7	12
206	Plasmon enhanced selective electronic pathways in TiO2 supported atomically ordered bimetallic Au-Cu alloys. Journal of Catalysis, 2017, 352, 638-648.	3.1	16
207	An Operando Mechanistic Evaluation of a Solarâ€Rechargeable Sodiumâ€lon Intercalation Battery. Advanced Energy Materials, 2017, 7, 1700545.	10.2	36
208	Harnessing the Beneficial Attributes of Ceria and Titania in a Mixed-Oxide Support for Nickel-Catalyzed Photothermal CO 2 Methanation. Engineering, 2017, 3, 393-401.	3.2	42
209	Flame spray pyrolysis-designed silica/ceria-zirconia supports for the carbon dioxide reforming of methane. Applied Catalysis A: General, 2017, 546, 47-57.	2.2	41
210	Renewable Energy Conversion and Storage. Advanced Energy Materials, 2017, 7, 1703091.	10.2	13
211	Alternative strategies in improving the photocatalytic and photoelectrochemical activities of visible light-driven BiVO ₄ : a review. Journal of Materials Chemistry A, 2017, 5, 16498-16521.	5.2	364
212	Manipulating ceria-titania binary oxide features and their impact as nickel catalyst supports for low temperature steam reforming of methane. Applied Catalysis A: General, 2017, 530, 111-124.	2.2	22
213	Estimating NDMA Formation in a Distribution System Using a Hybrid Genetic Algorithm. Journal - American Water Works Association, 2017, 109, E265.	0.2	8
214	Spectrum splitting using gold and silver nanofluids for photovoltaic/thermal collectors. , 2017, , .		0
215	An Aqueous Metal-Ion Capacitor with Oxidized Carbon Nanotubes and Metallic Zinc Electrodes. Frontiers in Energy Research, 2016, 4, .	1.2	7 5
216	One-Dimensional TiO2 Nanostructured Photoanodes: From Dye-Sensitised Solar Cells to Perovskite Solar Cells. Energies, 2016, 9, 1030.	1.6	23

#	Article	IF	Citations
217	Efficient Water Splitting Catalyzed by Cobalt Phosphideâ€Based Nanoneedle Arrays Supported on Carbon Cloth. ChemSusChem, 2016, 9, 472-477.	3.6	185
218	Highly Selective and Stable Reduction of CO ₂ to CO by a Graphitic Carbon Nitride/Carbon Nanotube Composite Electrocatalyst. Chemistry - A European Journal, 2016, 22, 11991-11996.	1.7	132
219	Fabrication of high aspect ratio and openâ€ended TiO ₂ nanotube photocatalytic arrays through electrochemical anodization. AICHE Journal, 2016, 62, 415-420.	1.8	11
220	Nanorods: Epitaxial Growth of Au-Pt-Ni Nanorods for Direct High Selectivity H2 O2 Production (Adv.) Tj ETQq0 0	0 rgBT /O	verlock 10 Tf
221	Spectrum splitting using gold and silver nanofluids for photovoltaic/thermal collectors. , 2016, , .		4
222	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	5
223	ZnS Thin Films for Visible-Light Active Photoelectrodes: Effect of Film Morphology and Crystal Structure. Crystal Growth and Design, 2016, 16, 2461-2465.	1.4	27
224	Adsorption of T4 bacteriophages on planar indium tin oxide surface via controlled surface tailoring. Journal of Colloid and Interface Science, 2016, 468, 192-199.	5.0	12
225	Probing the charge separation process on In 2 S 3 /Pt-TiO 2 nanocomposites for boosted visible-light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2016, 198, 25-31.	10.8	56
226	Defect engineering of ZnS thin films for photoelectrochemical water-splitting under visible light. Solar Energy Materials and Solar Cells, 2016, 153, 179-185.	3.0	69
227	Mobile Polaronic States in α-MoO ₃ : An ab Initio Investigation of the Role of Oxygen Vacancies and Alkali Ions. ACS Applied Materials & Samp; Interfaces, 2016, 8, 10911-10917.	4.0	49
228	High Performance Au–Pd Supported on 3D Hybrid Strontium-Substituted Lanthanum Manganite Perovskite Catalyst for Methane Combustion. ACS Catalysis, 2016, 6, 6935-6947.	5.5	158
229	Exploring the Different Roles of Particle Size in Photoelectrochemical and Photocatalytic Water Oxidation on BiVO ₄ . ACS Applied Materials & Different Roles (2016, 8, 28607-28614).	4.0	73
230	Investigating the effect of UV light pre-treatment on the oxygen activation capacity of Au/TiO ₂ . Catalysis Science and Technology, 2016, 6, 8188-8199.	2.1	14
231	Photocatalysis: Interfacing BiVO ₄ with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling (Small 38/2016). Small, 2016, 12, 5232-5232.	5. 2	0
232	Understanding, Monitoring, and Controlling Biofilm Growth in Drinking Water Distribution Systems. Environmental Science & Envi	4.6	302
233	Water Splitting and CO ₂ Reduction under Visible Light Irradiation Using Z-Scheme Systems Consisting of Metal Sulfides, CoOx-Loaded BiVO ₄ , and a Reduced Graphene Oxide Electron Mediator. Journal of the American Chemical Society, 2016, 138, 10260-10264.	6.6	461
234	Interfacing BiVO 4 with Reduced Graphene Oxide for Enhanced Photoactivity: A Tale of Facet Dependence of Electron Shuttling. Small, 2016, 12, 5295-5302.	5.2	68

#	Article	IF	Citations
235	Epitaxial Growth of Au–Pt–Ni Nanorods for Direct High Selectivity H ₂ O ₂ Production. Advanced Materials, 2016, 28, 9949-9955.	11.1	205
236	C–C Cleavage by Au/TiO ₂ during Ethanol Oxidation: Understanding Bandgap Photoexcitation and Plasmonically Mediated Charge Transfer via Quantitative in Situ DRIFTS. ACS Catalysis, 2016, 6, 8021-8029.	5 . 5	38
237	Iron Complex Facilitated Copper Redox Cycling for Nitric Oxide Generation as Nontoxic Nitrifying Biofilm Inhibitor. ACS Applied Materials & Samp; Interfaces, 2016, 8, 30502-30510.	4.0	15
238	Enhancing Ni-SiO 2 catalysts for the carbon dioxide reforming of methane: Reduction-oxidation-reduction pre-treatment. Applied Catalysis B: Environmental, 2016, 199, 155-165.	10.8	71
239	The role of adsorbed oxygen in formic acid oxidation by Pt/TiO ₂ facilitated by light pre-treatment. Catalysis Science and Technology, 2016, 6, 6679-6687.	2.1	22
240	Exploring Cu oxidation state on TiO2 and its transformation during photocatalytic hydrogen evolution. Applied Catalysis A: General, 2016, 521, 190-201.	2.2	73
241	An integrated nanocarbon–cellulose membrane for solid-state supercapacitors. Science Bulletin, 2016, 61, 368-377.	4.3	4
242	BiVO ₄ {010} and {110} Relative Exposure Extent: Governing Factor of Surface Charge Population and Photocatalytic Activity. Journal of Physical Chemistry Letters, 2016, 7, 1400-1405.	2.1	231
243	Understanding Plasmon and Band Gap Photoexcitation Effects on the Thermal-Catalytic Oxidation of Ethanol by TiO ₂ -Supported Gold. ACS Catalysis, 2016, 6, 1870-1879.	5.5	105
244	Photoelectrochemical water oxidation using a Bi ₂ MoO ₆ /MoO ₃ heterojunction photoanode synthesised by hydrothermal treatment of an anodised MoO ₃ thin film. Journal of Materials Chemistry A, 2016, 4, 6964-6971.	5.2	71
245	Hybrid PV/T enhancement using selectively absorbing Ag–SiO 2 /carbon nanofluids. Solar Energy Materials and Solar Cells, 2016, 147, 281-287.	3.0	203
246	Hydrogen evolution via glycerol photoreforming over Cu–Pt nanoalloys on TiO2. Applied Catalysis A: General, 2016, 518, 221-230.	2.2	45
247	Electrospun Polyacrylonitrile–Ionic Liquid Nanofibers for Superior PM _{2.5} Capture Capacity. ACS Applied Materials & Interfaces, 2016, 8, 7030-7036.	4.0	92
248	Meso-Molding Three-Dimensional Macroporous Perovskites: A New Approach to Generate High-Performance Nanohybrid Catalysts. ACS Applied Materials & Samp; Interfaces, 2016, 8, 2457-2463.	4.0	64
249	Ni/TiO2 for low temperature steam reforming of methane. Chemical Engineering Science, 2016, 140, 161-170.	1.9	74
250	Selective Solar Absorption of Nanofluids for Photovoltaic/Thermal Collector Enhancement. Materials Research Society Symposia Proceedings, 2015, 1779, 53-58.	0.1	5
251	Ni-SiO2 Catalysts for the Carbon Dioxide Reforming of Methane: Varying Support Properties by Flame Spray Pyrolysis. Molecules, 2015, 20, 4594-4609.	1.7	57
252	Complete surface coverage of ZnO nanorod arrays by pulsed electrodeposited CuInS ₂ for visible light energy conversion. Dalton Transactions, 2015, 44, 7127-7130.	1.6	16

#	Article	IF	CITATIONS
253	Z-Schematic Water Splitting into H ₂ and O ₂ Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator. Journal of the American Chemical Society, 2015, 137, 604-607.	6.6	467
254	Introducing a protective interlayer of TiO2 in Cu2O–CuO heterojunction thin film as a highly stable visible light photocathode. RSC Advances, 2015, 5, 5231-5236.	1.7	55
255	Production of formic acid from CO2 reduction by means of potassium borohydride at ambient conditions. Chemical Engineering Science, 2015, 137, 301-307.	1.9	27
256	Frequency-regulated pulsed electrodeposition of CulnS ₂ on ZnO nanorod arrays as visible light photoanodes. Journal of Materials Chemistry A, 2015, 3, 15876-15881.	5. 2	30
257	Polyurethane sponge facilitating highly dispersed TiO2 nanoparticles on reduced graphene oxide sheets for enhanced photoelectro-oxidation of ethanol. Journal of Materials Chemistry A, 2015, 3, 15675-15682.	5.2	33
258	Solar hydrogen evolution using a CuGaS ₂ photocathode improved by incorporating reduced graphene oxide. Journal of Materials Chemistry A, 2015, 3, 8566-8570.	5. 2	45
259	Analysis of the Promoted Activity and Molecular Mechanism of Hydrogen Production over Fine Au–Pt Alloyed TiO ₂ Photocatalysts. ACS Catalysis, 2015, 5, 3924-3931.	5.5	110
260	Tuning Phase Composition of TiO ₂ by Sn ⁴⁺ Doping for Efficient Photocatalytic Hydrogen Generation. ACS Applied Materials & Samp; Interfaces, 2015, 7, 23941-23948.	4.0	64
261	Copper Complex in Poly(vinyl chloride) as a Nitric Oxide-Generating Catalyst for the Control of Nitrifying Bacterial Biofilms. ACS Applied Materials & Samp; Interfaces, 2015, 7, 22148-22156.	4.0	31
262	Scaffolding an ultrathin CdS layer on a ZnO nanorod array using pulsed electrodeposition for improved photocharge transport under visible light illumination. Journal of Materials Chemistry A, 2015, 3, 19582-19587.	5.2	55
263	Enhanced Visible Light-Induced Charge Separation and Charge Transport in Cu ₂ O-Based Photocathodes by Urea Treatment. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19887-19893.	4.0	27
264	Electrodeposited Cu ₂ O as Photoelectrodes with Controllable Conductivity Type for Solar Energy Conversion. Journal of Physical Chemistry C, 2015, 119, 26275-26282.	1.5	79
265	Controllable synthesis of concave cubic gold core–shell nanoparticles for plasmon-enhanced photon harvesting. Journal of Colloid and Interface Science, 2015, 449, 246-251.	5.0	19
266	Enhancing the catalytic oxidation capacity of Pt/TiO2 using a light pre-treatment approach. Applied Catalysis B: Environmental, 2015, 164, 10-17.	10.8	35
267	Tungsten Trioxide as a Visible Light Photocatalyst for Volatile Organic Carbon Removal. Molecules, 2014, 19, 17747-17762.	1.7	64
268	Optical modeling-assisted characterization of dye-sensitized solar cells using TiO2 nanotube arrays as photoanodes. Beilstein Journal of Nanotechnology, 2014, 5, 895-902.	1.5	9
269	Impact of Cu oxidation state on photocatalytic H2 production by Cu/TiO <inf>2</inf> . , 2014, , .		1
270	Investigating the preparation parameters during the synthesis of CulnS <inf>2</inf> thin film photoelectrodes. , 2014, , .		0

#	Article	IF	Citations
271	Labeling of cancer cells with magnetic nanoparticles for magnetic resonance imaging. Magnetic Resonance in Medicine, 2014, 71, 1896-1905.	1.9	13
272	Highly adsorptive and regenerative magnetic TiO2 for natural organic matter (NOM) removal in water. Chemical Engineering Journal, 2014, 246, 196-203.	6.6	23
273	Interface-dependent electrochemical behavior of nanostructured manganese (IV) oxide (Mn3O4). Electrochimica Acta, 2014, 130, 810-817.	2.6	14
274	Perfluorodecalin nanocapsule as an oxygen carrier and contrast agent for ultrasound imaging. RSC Advances, 2014, 4, 13052.	1.7	23
275	Harvesting, Storing and Utilising Solar Energy using MoO ₃ : Modulating Structural Distortion through pH Adjustment. ChemSusChem, 2014, 7, 1934-1941.	3.6	36
276	Tailoring the conduction band of titanium oxide by doping tungsten for efficient electron injection in a sensitized photoanode. Nanoscale, 2014, 6, 3875-3880.	2.8	28
277	TiO2-coated natural zeolite: Rapid humic acid adsorption and effective photocatalytic regeneration. Chemical Engineering Science, 2014, 105, 46-52.	1.9	131
278	CO2 reforming of methane over MCM-41-supported nickel catalysts: altering support acidity by one-pot synthesis at room temperature. Applied Catalysis A: General, 2014, 473, 51-58.	2.2	82
279	TiO ₂ -supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. Journal of Materials Chemistry A, 2014, 2, 6432-6438.	5.2	92
280	Morphological evolution and electronic alteration of ZnO nanomaterials induced by Ni/Fe co-doping. Nanoscale, 2014, 6, 7312-7318.	2.8	10
281	The effect of common bacterial growth media on zinc oxide thin films: identification of reaction products and implications for the toxicology of ZnO. RSC Advances, 2014, 4, 4363-4370.	1.7	15
282	Nanoparticle–protein corona complexes govern the biological fates and functions of nanoparticles. Journal of Materials Chemistry B, 2014, 2, 2060.	2.9	211
283	Exploring the Origin of Enhanced Activity and Reaction Pathway for Photocatalytic H ₂ Production on Au/B-TiO ₂ Catalysts. ACS Catalysis, 2014, 4, 1451-1457.	5.5	86
284	CuO x dispersion and reducibility on TiO 2 and its impact on photocatalytic hydrogen evolution. International Journal of Hydrogen Energy, 2014, 39, 12499-12506.	3.8	56
285	Fabrication of a CulnS ₂ photoelectrode using a single-step electrodeposition with controlled calcination atmosphere. RSC Advances, 2014, 4, 3278-3283.	1.7	20
286	Prompting electron transport in mesoporous semiconductor electrode by simple film compression. International Journal of Nanotechnology, 2014, 11, 1006.	0.1	0
287	Influence of MoO3(110) Crystalline Plane on Its Self-Charging Photoelectrochemical Properties. Scientific Reports, 2014, 4, 7428.	1.6	58
288	Reduced Graphene Oxide: Control of Water Miscibility, Conductivity, and Defects by Photocatalysis. ChemCatChem, 2013, 5, 3060-3067.	1.8	22

#	Article	IF	CITATIONS
289	Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 2013, 260, 984-992.	6.5	56
290	Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials, 2013, 34, 8808-8818.	5.7	80
291	An over 10% enhancement of dye-sensitized solar cell efficiency by tuning nanoparticle packing. RSC Advances, 2013, 3, 17003.	1.7	10
292	Porous Titania Nanosheet/Nanoparticle Hybrids as Photoanodes for Dye-Sensitized Solar Cells. ACS Applied Materials & Solar Cells.	4.0	50
293	Selective synthesis of TiO2-based nanoparticles with highly active surface sites for gas-phase photocatalytic oxidation. Applied Catalysis B: Environmental, 2013, 138-139, 260-267.	10.8	44
294	Expanding the Applications of the Ilmenite Mineral to the Preparation of Nanostructures: TiO ₂ Nanorods and their Photocatalytic Properties in the Degradation of Oxalic Acid. Chemistry - A European Journal, 2013, 19, 1091-1096.	1.7	25
295	Understanding effects of water characteristics on natural organic matter treatability by PACl and a novel PACl-chitosan coagulants. Journal of Hazardous Materials, 2013, 263, 718-725.	6.5	31
296	Confined Auâ€Pd Ensembles in Mesoporous TiO ₂ Spheres for the Photocatalytic Oxidation of Acetaldehyde. ChemCatChem, 2013, 5, 3557-3561.	1.8	18
297	Photocatalysis of heat treated sodium- and hydrogen-titanate nanoribbons for water splitting, H2/O2 generation and oxalic acid oxidation. Chemical Engineering Science, 2013, 93, 341-349.	1.9	29
298	Artificial photosynthesis as a frontier technology for energy sustainability. Energy and Environmental Science, 2013, 6, 1074.	15.6	284
299	Cellular uptake and activity of heparin functionalised cerium oxide nanoparticles in monocytes. Biomaterials, 2013, 34, 4377-4386.	5.7	52
300	Embedment of anodized p-type Cu2O thin films with CuO nanowires for improvement in photoelectrochemical stability. Nanoscale, 2013, 5, 2952.	2.8	144
301	Induced Adaptation of <i>Bacillus sp.</i> to Antimicrobial Nanosilver. Small, 2013, 9, 3554-3560.	5.2	81
302	Influence of Annealing Temperature of WO ₃ in Photoelectrochemical Conversion and Energy Storage for Water Splitting. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5269-5275.	4.0	89
303	Crystalline TiO ₂ Nanorod Aggregates: Templateâ€Free Fabrication and Efficient Light Harvesting in Dyeâ€6ensitized Solar Cell Applications. Particle and Particle Systems Characterization, 2013, 30, 754-758.	1.2	10
304	Antimicrobial Resistance: Induced Adaptation of Bacillus sp. to Antimicrobial Nanosilver (Small) Tj ETQq0 0 0 rgBT	/Oyerlock	10 Tf 50 142
305	Understanding Selfâ€Photorechargeability of WO ₃ for H ₂ Generation without Light Illumination. ChemSusChem, 2013, 6, 291-298.	3.6	35
306	Zinc Oxide Nanoparticles Induce Cell Filamentation in <i>Escherichia coli</i> Systems Characterization, 2013, 30, 375-380.	1,2	13

#	Article	IF	Citations
307	Solar Cells: In Situ Growth of a ZnO Nanowire Network within a TiO2Nanoparticle Film for Enhanced Dye-Sensitized Solar Cell Performance (Adv. Mater. 43/2012). Advanced Materials, 2012, 24, 5849-5849.	11.1	5
308	Combined electrophoretic deposition–anodization method to fabricate reduced graphene oxide–TiO2 nanotube films. RSC Advances, 2012, 2, 8164.	1.7	55
309	Preparation and characterisation of new-polyaluminum chloride-chitosan composite coagulant. Water Research, 2012, 46, 4614-4620.	5.3	76
310	Sustained solar hydrogen generation using a dye-sensitised NiO photocathode/BiVO4 tandem photo-electrochemical device. Energy and Environmental Science, 2012, 5, 9472.	15.6	167
311	Effects of Serum Adsorption on Cellular Uptake Profile and Consequent Impact of Titanium Dioxide Nanoparticles on Human Lung Cell Lines. ACS Nano, 2012, 6, 4083-4093.	7.3	134
312	A perspective on fabricating carbon-based nanomaterials by photocatalysis and their applications. Energy and Environmental Science, 2012, 5, 9307.	15.6	138
313	In Situ Growth of a ZnO Nanowire Network within a TiO ₂ Nanoparticle Film for Enhanced Dyeâ€Sensitized Solar Cell Performance. Advanced Materials, 2012, 24, 5850-5856.	11.1	218
314	Exploring the relationship between surface structure and photocatalytic activity of flame-made TiO2-based catalysts. Applied Catalysis B: Environmental, 2012, 126, 290-297.	10.8	27
315	Cellular uptake and reactive oxygen species modulation of cerium oxide nanoparticles in human monocyte cell line U937. Biomaterials, 2012, 33, 7915-7924.	5.7	109
316	Hybrid Graphene and Graphitic Carbon Nitride Nanocomposite: Gap Opening, Electron–Hole Puddle, Interfacial Charge Transfer, and Enhanced Visible Light Response. Journal of the American Chemical Society, 2012, 134, 4393-4397.	6.6	565
317	Effect of Cation Intercalation on the Growth of Hexagonal WO ₃ Nanorods. Journal of Physical Chemistry C, 2012, 116, 11722-11727.	1.5	64
318	Effect of TiO2 nanoparticle surface functionalization on protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb polymers using catalytic chain transfer and thiol–ene chemistry. Polymer Chemistry, 2012, 3, 2743.	1.9	43
319	Transforming Anodized WO ₃ Films into Visible-Light-Active Bi ₂ WO ₆ Photoelectrodes by Hydrothermal Treatment. Journal of Physical Chemistry Letters, 2012, 3, 913-918.	2.1	86
320	Ultrasensitive electrochemical detection of prostate-specific antigen (PSA) using gold-coated magnetic nanoparticles as †dispersible electrodes'. Chemical Communications, 2012, 48, 3503.	2.2	96
321	Insight into Serum Protein Interactions with Functionalized Magnetic Nanoparticles in Biological Media. Langmuir, 2012, 28, 4346-4356.	1.6	59
322	Progress in Heterogeneous Photocatalysis: From Classical Radical Chemistry to Engineering Nanomaterials and Solar Reactors. Journal of Physical Chemistry Letters, 2012, 3, 629-639.	2.1	403
323	The Biochemiresistor: An Ultrasensitive Biosensor for Small Organic Molecules. Angewandte Chemie - International Edition, 2012, 51, 6456-6459.	7.2	38
324	Visible light-induced charge storage, on-demand release and self-photorechargeability of WO3 film. Physical Chemistry Chemical Physics, 2011, 13, 13421.	1.3	50

#	Article	IF	Citations
325	Effects of surface functional groups on the aggregation stability of magnetite nanoparticles in biological media containing serum. , $2011, \ldots$		2
326	Porous TiO2with a controllable bimodal pore size distribution from natural ilmenite. CrystEngComm, 2011, 13, 1322-1327.	1.3	23
327	Wrapping the walls of n-TiO2 nanotubes with p-CulnS2 nanoparticles using pulsed-electrodeposition for improved heterojunction photoelectrodes. Chemical Communications, 2011, 47, 11288.	2.2	55
328	Cytotoxic Origin of Copper(II) Oxide Nanoparticles: Comparative Studies with Micron-Sized Particles, Leachate, and Metal Salts. ACS Nano, 2011, 5, 7214-7225.	7.3	309
329	Understanding the Formation of Iron Oxide Nanoparticles with Acicular Structure from Iron(III) Chloride and Hydrazine Monohydrate. Crystal Growth and Design, 2011, 11, 1689-1696.	1.4	31
330	Hydrothermally Synthesized Titanate Nanostructures: Impact of Heat Treatment on Particle Characteristics and Photocatalytic Properties. ACS Applied Materials & Samp; Interfaces, 2011, 3, 3988-3996.	4.0	69
331	Flame Preparation of Visible-Light-Responsive BiVO < sub > 4 < sub > 0 xygen Evolution Photocatalysts with Subsequent Activation via Aqueous Route. ACS Applied Materials & amp; Interfaces, 2011, 3, 1997-2004.	4.0	128
332	Reduced Graphene Oxide as a Solid-State Electron Mediator in Z-Scheme Photocatalytic Water Splitting under Visible Light. Journal of the American Chemical Society, 2011, 133, 11054-11057.	6.6	952
333	Sodium Fluoride-Assisted Modulation of Anodized TiO ₂ Nanotube for Dye-Sensitized Solar Cells Application. ACS Applied Materials & Solar Representation (1988) (4.0	42
334	A three-way synergy of triple-modified Bi2WO6/Ag/N–TiO2 nanojunction film for enhanced photogenerated charges utilization. Chemical Communications, 2011, 47, 8641.	2.2	39
335	Synthesis of Porous and Visible-Light Absorbing Bi ₂ WO ₆ /TiO ₂ Heterojunction Films with Improved Photoelectrochemical and Photocatalytic Performances. Journal of Physical Chemistry C, 2011, 115, 7419-7428.	1.5	186
336	Hybrid Graphene/Titania Nanocomposite: Interface Charge Transfer, Hole Doping, and Sensitization for Visible Light Response. Journal of Physical Chemistry Letters, 2011, 2, 894-899.	2.1	252
337	Stabilization of Magnetic Iron Oxide Nanoparticles in Biological Media by Fetal Bovine Serum (FBS). Langmuir, 2011, 27, 843-850.	1.6	108
338	Photocatalytic Overall Water Splitting over ALi2Ti6O14 (A: 2Na and Sr) with Tunneling Structure. Chemistry Letters, 2011, 40, 108-110.	0.7	6
339	Temperature-induced evolution of reaction sites and mechanisms during preferential oxidation of CO. Journal of Catalysis, 2011, 277, 64-71.	3.1	86
340	Photocatalysis in TiO2 aqueous suspension: Effects of mono- or di-hydroxyl substitution of butanedioic acid on the disappearance and mineralisation rates. Catalysis Today, 2011, 178, 51-57.	2.2	15
341	Understanding the Enhancement in Photoelectrochemical Properties of Photocatalytically Prepared TiO ₂ -Reduced Graphene Oxide Composite. Journal of Physical Chemistry C, 2011, 115, 6004-6009.	1.5	403
342	Biological impacts of TiO2 on human lung cell lines A549 and H1299: particle size distribution effects. Journal of Nanoparticle Research, 2011, 13, 3801-3813.	0.8	42

#	Article	IF	Citations
343	Semiconductor/reduced graphene oxide nanocomposites derived from photocatalytic reactions. Catalysis Today, 2011, 164, 353-357.	2.2	167
344	Dopant-free, polymorphic design of TiO2 nanocrystals by flame aerosol synthesis. Chemical Engineering Science, 2011, 66, 2409-2416.	1.9	31
345	A mesoporous SiO2 intermediate layer for improving light propagation in a bundled tube photoreactor. Chemical Engineering Science, 2011, 66, 3641-3647.	1.9	4
346	Titania nanocomposite polyethersulfone ultrafiltration membranes fabricated using a low temperature hydrothermal coating process. Journal of Membrane Science, 2011, 380, 98-113.	4.1	103
347	Relationship between mineralization kinetics and mechanistic pathway during malic acid photodegradation. Journal of Molecular Catalysis A, 2011, 335, 151-157.	4.8	14
348	Gold-coated magnetic nanoparticles as "dispersible electrodes―– Understanding their electrochemical performance. Journal of Electroanalytical Chemistry, 2011, 656, 130-135.	1.9	16
349	Microbial transformation of arsenic species in municipal landfill leachate. Journal of Hazardous Materials, 2011, 188, 140-147.	6.5	22
350	Bi-functional gold-coated magnetite composites with improved biocompatibility. Journal of Colloid and Interface Science, 2011, 354, 536-545.	5.0	36
351	Experimental validation of proton transverse relaxivity models for superparamagnetic nanoparticle MRI contrast agents. Nanotechnology, 2010, 21, 035103.	1.3	81
352	Charge Transport in Dye-Sensitized Solar Cells Based on Flame-made \$hbox{TiO}_{m 2}\$ Nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics, 2010, 16, 1641-1648.	1.9	16
353	Catalytic reduction of NO by CO over Cu/CexZr1â^'xO2 prepared by flame synthesis. Journal of Catalysis, 2010, 272, 210-219.	3.1	129
354	The influence of La-doping on the activity and stability of Cu/ZnO catalyst for the low-temperature water–gas shift reaction. Journal of Catalysis, 2010, 273, 73-81.	3.1	84
355	Some More Observations on the Unique Electrochemical Properties of Electrode–Monolayer–Nanoparticle Constructs. ChemPhysChem, 2010, 11, 2807-2813.	1.0	45
356	Inside Cover: Some More Observations on the Unique Electrochemical Properties of Electrode-Monolayer-Nanoparticle Constructs (ChemPhysChem 13/2010). ChemPhysChem, 2010, 11, 2654-2654.	1.0	2
357	Functionalization Strategies for Protease Immobilization on Magnetic Nanoparticles. Advanced Functional Materials, 2010, 20, 1767-1777.	7.8	133
358	Facile Functionalization and Phase Reduction Route of Magnetic Iron Oxide Nanoparticles for Conjugation of Matrix Metalloproteinase. Advanced Engineering Materials, 2010, 12, B210.	1.6	9
359	The effect of pH on UV-based advanced oxidation technologies – 1,4-Dioxane degradation. Journal of Hazardous Materials, 2010, 182, 75-79.	6.5	68
360	Transparent visible light activated C–N–F-codoped TiO2 films for self-cleaning applications. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 210, 181-187.	2.0	86

#	Article	IF	Citations
361	A comparative study between photocatalytic and photoelectrocatalytic properties of Pt deposited TiO2 thin films for glucose degradation. Chemical Engineering Journal, 2010, 158, 482-488.	6.6	35
362	Channelled optical fibre photoreactor for improved air quality control. Chemical Engineering Science, 2010, 65, 882-889.	1.9	30
363	Computational fluid dynamics modelling and optimal configuring of a channelled optical fibre photoreactor. Chemical Engineering Science, 2010, 65, 5029-5040.	1.9	10
364	Pyrophoricity and stability of copper and platinum based water-gas shift catalysts during oxidative shut-down/start-up operation. Chemical Engineering Science, 2010, 65, 6461-6470.	1.9	27
365	Photocatalytic H ₂ Evolution over TiO ₂ Nanoparticles. The Synergistic Effect of Anatase and Rutile. Journal of Physical Chemistry C, 2010, 114, 2821-2829.	1.5	335
366	Thiol functionalisation of gold-coated magnetic nanoparticles: Enabling the controlled attachment of functional molecules. , 2010 , , .		3
367	Reducing Graphene Oxide on a Visible-Light BiVO ₄ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting. Journal of Physical Chemistry Letters, 2010, 1, 2607-2612.	2.1	825
368	Assembly of Polyethylenimine-Based Magnetic Iron Oxide Vectors: Insights into Gene Delivery. Langmuir, 2010, 26, 7314-7326.	1.6	114
369	Fabrication of Highly Ordered TiO ₂ Nanorod/Nanotube Adjacent Arrays for Photoelectrochemical Applications. Langmuir, 2010, 26, 11226-11232.	1.6	62
370	†Dispersible electrodes': a solution to slow response times of sensitive sensors. Chemical Communications, 2010, 46, 8821.	2.2	48
371	Flower-Shaped Tungsten Oxide with Inorganic Fullerene-like Structure: Synthesis and Characterization. Crystal Growth and Design, 2010, 10, 3794-3801.	1.4	70
372	Integrated Photocatalytic Filtration Array for Indoor Air Quality Control. Environmental Science & Env	4.6	30
373	DNA hybridization for nanocube functionalization. , 2010, , .		1
374	Investigating preparation parameters during titanium oxide nanoribbon synthesis. , 2010, , .		0
375	Comparison of photocatalytic degradation of natural organic matter in two Australian surface waters using multiple analytical techniques. Organic Geochemistry, 2010, 41, 124-129.	0.9	64
376	Multi-wavelength spectroscopic and chromatography study on the photocatalytic oxidation of natural organic matter. Water Research, 2010, 44, 2525-2532.	5. 3	68
377	Understanding Hydrothermal Titanate Nanoribbon Formation. Crystal Growth and Design, 2010, 10, 3618-3625.	1.4	67
378	Understanding Photocatalytic Metallization of Preadsorbed Ionic Gold on Titania, Ceria, and Zirconia. Langmuir, 2010, 26, 2099-2106.	1.6	32

#	Article	IF	Citations
379	Arsenic speciation in municipal landfill leachate. Chemosphere, 2010, 79, 794-801.	4.2	28
380	Controlled Fabrication of Polyethylenimine-Functionalized Magnetic Nanoparticles for the Sequestration and Quantification of Free Cu ²⁺ . Langmuir, 2010, 26, 12247-12252.	1.6	87
381	Superhydrophilicity-assisted preparation of transparent and visible light activated N-doped titania film. Nanoscale, 2010, 2, 1122.	2.8	27
382	Flame spray pyrolysis: An enabling technology for nanoparticles design and fabrication. Nanoscale, 2010, 2, 1324.	2.8	558
383	Polyethylenimine Based Magnetic Iron-Oxide Vector: The Effect of Vector Component Assembly on Cellular Entry Mechanism, Intracellular Localization, and Cellular Viability. Biomacromolecules, 2010, 11, 2521-2531.	2.6	7 3
384	Anti-fouling magnetic nanoparticles for siRNA delivery. Journal of Materials Chemistry, 2010, 20, 255-265.	6.7	123
385	Flameâ€Synthesized Ceriaâ€Supported Copper Dimers for Preferential Oxidation of CO. Advanced Functional Materials, 2009, 19, 369-377.	7.8	120
386	Nanosized metal deposits on titanium dioxide for augmenting gas-phase toluene photooxidation. Journal of Nanoparticle Research, 2009, 11, 209-219.	0.8	41
387	Self-cleaning performance of polycarbonate surfaces coated with titania nanoparticles. Journal of Nanoparticle Research, 2009, 11, 1971-1979.	0.8	45
388	Reversible Antimicrobial Photoswitching in Nanosilver. Small, 2009, 5, 341-344.	5.2	158
389	Effect of film thickness and agglomerate size on the superwetting and fog-free characteristics of TiO2 films. Thin Solid Films, 2009, 517, 5425-5430.	0.8	37
390	The role of iron in hexavalent chromium reduction by municipal landfill leachate. Journal of Hazardous Materials, 2009, 161, 657-662.	6.5	17
391	CFD modelling for a TiO2-coated glass-bead photoreactor irradiated by optical fibres: Photocatalytic degradation of oxalic acid. Chemical Engineering Science, 2009, 64, 1695-1706.	1.9	54
392	Photoelectrocatalytic activity of mesoporous TiO2 thin film electrodes. Applied Catalysis A: General, 2009, 354, 8-16.	2.2	57
393	Probing Surface Properties and Reaction Intermediates During Heterogeneous Catalytic Oxidation of Acetaldehyde. ChemCatChem, 2009, 1, 286-294.	1.8	18
394	Dots versus Antidots: Computational Exploration of Structure, Magnetism, and Half-Metallicity in Boronâ [^] Nitride Nanostructures. Journal of the American Chemical Society, 2009, 131, 17354-17359.	6.6	174
395	Fabrication and Dispersion of Gold-Shell-Protected Magnetite Nanoparticles: Systematic Control Using Polyethyleneimine. Chemistry of Materials, 2009, 21, 673-681.	3.2	253
396	Evolution of Morphology and Magnetic Properties in Silica/Maghemite Nanocomposites. Journal of Physical Chemistry C, 2009, 113, 12040-12047.	1.5	37

#	Article	IF	Citations
397	The stabilization and bio-functionalization of iron oxide nanoparticles using heterotelechelic polymers. Journal of Materials Chemistry, 2009, 19, 111-123.	6.7	157
398	Spectroscopic Studies of Pristine and Fluorinated Nano-ZrO ₂ in Photostimulated Heterogeneous Processes. Journal of Physical Chemistry C, 2009, 113, 4566-4574.	1.5	15
399	Photoelectrocatalytic activity of mesoporous TiO2 films prepared using the sol–gel method with tri-block copolymer as structure directing agent. Journal of Applied Electrochemistry, 2008, 38, 703-712.	1.5	22
400	Preparation of high porous Pt–V2O5–WO3/TiO2/SiC filter for simultaneous removal of NO and particulates. Powder Technology, 2008, 180, 79-85.	2.1	30
401	Photocatalytic oxidation of toluene and trichloroethylene in the gas-phase by metallised (Pt, Ag) titanium dioxide. Applied Catalysis B: Environmental, 2008, 78, 1-10.	10.8	104
402	Ru-Doped Cobaltâ^'Zirconia Nanocomposites by Flame Synthesis: Physicochemical and Catalytic Properties. Chemistry of Materials, 2008, 20, 4069-4079.	3.2	34
403	Removal of humic acid using TiO2 photocatalytic process – Fractionation and molecular weight characterisation studies. Chemosphere, 2008, 72, 263-271.	4.2	132
404	TiO ₂ Photocatalysis of Natural Organic Matter in Surface Water: Impact on Trihalomethane and Haloacetic Acid Formation Potential. Environmental Science & Echnology, 2008, 42, 6218-6223.	4.6	108
405	Synthesis and characterization of transition metal ion doping on the photocatalytic activity of TiO < inf > 2 < /inf > nanoparticles. , 2008, , .		3
406	Effect of Adhesion on Aggregation in Nanoparticle Dispersions. Journal of Adhesion, 2007, 83, 573-585.	1.8	8
407	Removal of contaminants of concern in water using advanced oxidation techniques. Water Science and Technology, 2007, 55, 301-306.	1.2	45
408	Dense TiO _{2 thin film: photoelectrochemical and photocatalytic properties. International Journal of Nanotechnology, 2007, 4, 574.}	0.1	10
409	A Study on the Removal of Humic Acid Using Advanced Oxidation Processes. Separation Science and Technology, 2007, 42, 1391-1404.	1.3	57
410	Low energy photosynthesis of gold-titania catalysts. Photochemical and Photobiological Sciences, 2007, 6, 829.	1.6	21
411	Insight into microstructural and magnetic properties of flame-made \hat{I}^3 -Fe2O3 nanoparticles. Journal of Materials Chemistry, 2007, 17, 4876.	6.7	99
412	Novel TiO2 thin film with non-UV activated superwetting and antifogging behaviours. Journal of Materials Chemistry, 2007, 17, 952.	6.7	109
413	Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid. Catalysis Today, 2007, 120, 203-213.	2.2	183
414	Insight towards the role of platinum in the photocatalytic mineralisation of organic compounds. Journal of Molecular Catalysis A, 2007, 263, 93-102.	4.8	64

#	Article	IF	Citations
415	The role of copper(II) ions in the photocatalytic oxidation of 1,4-dioxane. Journal of Molecular Catalysis A, 2007, 278, 152-159.	4.8	23
416	Electrophoresis–A new approach for the determination of organic matters adsorption on irradiated TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187, 127-132.	2.0	12
417	Microbial reduction of hexavalent chromium by landfill leachate. Journal of Hazardous Materials, 2007, 142, 153-159.	6.5	24
418	Degradation of 1,4-dioxane in water using TiO2 based photocatalytic and H2O2/UV processes. Journal of Hazardous Materials, 2007, 146, 496-501.	6.5	155
419	Inter-relationship between Pt oxidation states on TiO2 and the photocatalytic mineralisation of organic matters. Journal of Catalysis, 2007, 251, 271-280.	3.1	100
420	The effect of platinum and silver deposits in the photocatalytic oxidation of resorcinol. Applied Catalysis B: Environmental, 2007, 72, 363-372.	10.8	63
421	Light-induced isotopic exchange between O2 and semiconductor oxides, a characterization method that deserves not to be overlooked. Research on Chemical Intermediates, 2007, 33, 239-250.	1.3	37
422	Photocatalytic mineralisation of organic compounds: a comparison of flame-made TiO2 catalysts. Topics in Catalysis, 2007, 44, 489-497.	1.3	48
423	Flame-Sprayed Superparamagnetic Bare and Silica-Coated Maghemite Nanoparticles:  Synthesis, Characterization, and Protein Adsorptionâ^'Desorption. Chemistry of Materials, 2006, 18, 6403-6413.	3.2	123
424	Photodeposition of CdSe using Se-TiO2 suspensions as photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 179, 57-65.	2.0	26
425	Clarifying the role of silver deposits on titania for the photocatalytic mineralisation of organic compounds. Journal of Photochemistry and Photobiology A: Chemistry, 2006, 183, 41-52.	2.0	73
426	Micro-properties of coal aggregates: Implications on hyperbaric filtration performance for coal dewatering. International Journal of Mineral Processing, 2006, 80, 189-197.	2.6	10
427	Photocatalytic reduction of selenite and selenate using TiO2 photocatalyst. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 171, 113-120.	2.0	57
428	Modelling the leaching of Pb, Cd, As, and Cr from cementitious waste using PHREEQC. Journal of Hazardous Materials, 2005, 125, 45-61.	6.5	96
429	Densification of iron(III) sludge in neutralization. International Journal of Mineral Processing, 2005, 76, 149-162.	2.6	17
430	Bactericidal effects of titanium dioxide-based photocatalysts. Chemical Engineering Journal, 2005, 113, 55-63.	6.6	123
431	Photocatalytic reduction of selenium ions using different TiO2 photocatalysts. Chemical Engineering Science, 2005, 60, 5759-5769. mml:math altimg="si30.gif" display="inline" overflow="scroll"	1.9	43
432	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:tb="http://www.elsevier.com/xml/common/table/dtd" xmlns:sb="http://www.elsevier.com/xml/common/struct-bib/dtd" xmlns:ce="http://. Chemical Engineerin	1.9	175

#	Article	IF	Citations
433	The role of ferric ion in the photochemical and photocatalytic oxidation of resorcinol. Journal of Catalysis, 2005, 234, 292-299.	3.1	44
434	Effect of charge trapping species of cupric ions on the photocatalytic oxidation of resorcinol. Applied Catalysis B: Environmental, 2005, 55, 123-132.	10.8	56
435	Evaluating the applicability of regulatory leaching tests for assessing the hazards of Pb-contaminated soils. Journal of Hazardous Materials, 2005, 120, 101-111.	6.5	29
436	Effects of Ag and Pt on photocatalytic degradation of endocrine disrupting chemicals in water. Chemical Engineering Journal, 2005, 113, 65-72.	6.6	143
437	Pt-V2O5-WO3/TiO2 catalysts supported on SiC filter for NO reduction at low temperature. Korean Journal of Chemical Engineering, 2005, 22, 844-851.	1.2	26
438	Studies on the Preparation of Magnetic Photocatalysts. Journal of Nanoparticle Research, 2005, 7, 691-705.	0.8	51
439	On Different Approaches to Estimate the Mass Fractal Dimension of Coal Aggregates. Particle and Particle Systems Characterization, 2005, 22, 299-309.	1.2	55
440	Landfill Management, Leachate Generation, and Leach Testing of Solid Wastes in Australia and Overseas. Critical Reviews in Environmental Science and Technology, 2005, 35, 239-332.	6.6	95
441	Understanding selective enhancement by silver during photocatalytic oxidation. Photochemical and Photobiological Sciences, 2005, 4, 565.	1.6	35
442	Silver metallisation of titania particles: effects on photoactivity for the oxidation of organics. Chemical Engineering Journal, 2004, 98, 127-139.	6.6	72
443	Aggregate properties in relation to aggregation conditions under various applied shear environments. International Journal of Mineral Processing, 2004, 73, 295-307.	2.6	32
444	Characterisation of short-range structure of silica aggregatesâ€"implication to sediment compaction. International Journal of Mineral Processing, 2004, 73, 65-81.	2.6	17
445	Implications of the structure of cementitious wastes containing Pb(II), Cd(II), As(V), and Cr(VI) on the leaching of metals. Cement and Concrete Research, 2004, 34, 1093-1102.	4.6	79
446	Comparison between Acetic Acid and Landfill Leachates for the Leaching of Pb(II), Cd(II), As(V), and Cr(VI) from Cementitious Wastes. Environmental Science & Environmental Sc	4.6	68
447	Floc Strength Characterization Technique. An Insight into Silica Aggregation. Langmuir, 2004, 20, 6450-6457.	1.6	24
448	Microbial Reduction of Hexavalent Chromium in Landfill Leachate. Australian Journal of Chemistry, 2004, 57, 967.	0.5	3
449	Understanding the role of restructuring in flocculation: The application of a population balance model. Chemical Engineering Science, 2003, 58, 327-338.	1.9	121
450	Evaluating the applicability of a modified toxicity characteristic leaching procedure (TCLP) for the classification of cementitious wastes containing lead and cadmium. Journal of Hazardous Materials, 2003, 103, 125-140.	6.5	90

#	Article	IF	Citations
451	Effects of organic hole scavengers on the photocatalytic reduction of selenium anions. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 159, 273-280.	2.0	189
452	Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chemical Engineering Journal, 2003, 95, 179-186.	6.6	161
453	The effect of preparation method on the photoactivity of crystalline titanium dioxide particles. Chemical Engineering Journal, 2003, 95, 213-220.	6.6	143
454	Photocatalytic oxidation of cyanide: kinetic and mechanistic studies. Journal of Molecular Catalysis A, 2003, 193, 285-297.	4.8	93
455	Photocatalytic reduction of Se(VI) in aqueous solutions in UV/TiO2 system: importance of optimum ratio of reactants on TiO2 surface. Journal of Molecular Catalysis A, 2003, 202, 73-85.	4.8	63
456	Relationship between Floc Short Range Structure and Sediment Compaction. Particle and Particle Systems Characterization, 2003, 20, 327-334.	1.2	6
457	Effect of formate and methanol on photoreduction/removal of toxic cadmium ions using TiO2 semiconductor as photocatalyst. Chemical Engineering Science, 2003, 58, 4429-4439.	1.9	114
458	Photocatalytic Reduction of Se(VI) in Aqueous Solutions in UV/TiO2System:Â Kinetic Modeling and Reaction Mechanism. Journal of Physical Chemistry B, 2003, 107, 4296-4303.	1.2	44
459	The Effect of Floc Size and Structure on Specific Cake Resistance and Compressibility in Dead-End Microfiltration. Separation Science and Technology, 2003, 38, 869-887.	1.3	56
460	Aggregation Mechanisms of Latex of Different Particle Sizes in a Controlled Shear Environment. Langmuir, 2002, 18, 1974-1984.	1.6	103
461	Photocatalytic degradation of cyanide using titanium dioxide modified with copper oxide. Journal of Environmental Management, 2002, 6, 471-485.	1.7	148
462	Zeolite synthesis from coal fly ash for the removal of lead ions from aqueous solution. Journal of Chemical Technology and Biotechnology, 2002, 77, 63-69.	1.6	82
463	Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2002, 94, 71-81.	1.7	137
464	Effect of copper(II) on the photocatalytic degradation of sucrose. Journal of Molecular Catalysis A, 2002, 177, 265-272.	4.8	39
465	Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. Journal of Molecular Catalysis A, 2002, 180, 193-200.	4.8	178
466	Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 233-245.	2.0	311
467	Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 148, 303-313.	2.0	131
468	On techniques for the measurement of the mass fractal dimension of aggregates. Advances in Colloid and Interface Science, 2002, 95, 1-50.	7.0	403

#	Article	IF	CITATIONS
469	The Formation of Nano-sized Selenium–titanium Dioxide Composite Semiconductors by Photocatalysis. Journal of Nanoparticle Research, 2002, 4, 541-552.	0.8	45
470	New Methodology for the Analysis of Physical Structure of Solid Aggregates Journal of Chemical Engineering of Japan, 2002, 35, 346-353.	0.3	2
471	Role and Fate of Hematite in Titania Coated Hematite Photocatalysts. Journal of Advanced Oxidation Technologies, 2002, 5, .	0.5	2
472	Effects of Fe3+ and Ag+ ions on the photocatalytic degradation of sucrose in water. Catalysis Today, 2001, 68, 201-208.	2.2	66
473	Evidence of Shear Rate Dependence on Restructuring and Breakup of Latex Aggregates. Journal of Colloid and Interface Science, 2001, 236, 67-77.	5.0	161
474	Scattering Behavior of Restructured Aggregates: A Simulation Study. Journal of Colloid and Interface Science, 2001, 241, 286-288.	5.0	5
475	Studies on the Mineralization and Separation Efficiencies of a Magnetic Photocatalyst. Chemical Engineering and Technology, 2001, 24, 745-748.	0.9	59
476	Degradation of Sucrose and Nitrate Over Titania Coated Nano-hematite Photocatalysts. Journal of Nanoparticle Research, 2001, 3, 289-302.	0.8	38
477	The Effect of the Freezing Column Diameter on Freezing and Thawing Treatment of Excess Activated Sludge Journal of Chemical Engineering of Japan, 2001, 34, 1562-1566.	0.3	1
478	Effect of inlet mass loading, water and total bacteria count on methanol elimination using upward flow and downward flow biofilters., 2000, 75, 299-305.		45
479	Measurement of Fractal Aggregates of Polydisperse Particles Using Small-Angle Light Scattering. Journal of Colloid and Interface Science, 2000, 221, 186-194.	5.0	53
480	Novel Photocatalyst:Â Titania-Coated Magnetite. Activity and Photodissolution. Journal of Physical Chemistry B, 2000, 104, 4387-4396.	1.2	492
481	Effect of inlet mass loading, water and total bacteria count on methanol elimination using upward flow and downward flow biofilters., 2000, 75, 299.		2
482	Mechanisms of Cr(VI) removal from water by various types of activated carbons. , 1999, 74, 111-122.		115
483	Effect of shear schedule on particle size, density, and structure during flocculation in stirred tanks. Powder Technology, 1998, 97, 26-34.	2.1	245
484	Rapid determination of fractal structure of bacterial assemblages in wastewater treatment: Implications to process optimisation. Water Science and Technology, 1998, 38, 9.	1.2	7
485	Fractal Aggregates of Polydisperse Particles. Journal of Colloid and Interface Science, 1998, 205, 459-469.	5.0	53
486	The Effect of Polydispersity in Primary Particle Size on Measurement of the Fractal Dimension of Aggregates. Particle and Particle Systems Characterization, 1998, 15, 3-8.	1,2	19

#	Article	IF	CITATIONS
487	Rapid Structure Characterization of Bacterial Aggregates. Environmental Science & Emp; Technology, 1998, 32, 3735-3742.	4.6	115
488	Rapid Determination of Bacterial Assemblage Structure: Implications to Process Optimisation in Wastewater Treatment. , 1998 , , $269-283$.		4
489	Monitoring effects of shearing on floc structure using small-angle light scattering. Powder Technology, 1996, 88, 51-54.	2.1	33
490	The Use of Small Angle Light Scattering to Study Structure of Flocs. Particle and Particle Systems Characterization, 1995, 12, 274-278.	1.2	21
491	Small Angle X-Ray Scattering of Hematite Aggregates. Particle and Particle Systems Characterization, 1994, 11, 315-319.	1.2	18
492	Cessation of Aggregate Growth. Particle and Particle Systems Characterization, 1993, 10, 152-155.	1.2	1
493	Measurement of Aggregate Fractal Dimensions Using Static Light Scattering. Particle and Particle Systems Characterization, 1993, 10, 239-245.	1.2	22
494	Effect of fulvic acid adsorption on the aggregation kinetics and structure of hematite particles. Journal of Colloid and Interface Science, 1992, 151, 244-257.	5.0	101
495	Fractal structure of hematite aggregates. Journal of Colloid and Interface Science, 1990, 140, 158-168.	5.0	94
496	Structure and kinetics of aggregating colloidal haematite. Colloids and Surfaces, 1990, 46, 1-19.	0.9	64