
Feng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184336/publications.pdf Version: 2024-02-01

FENCLU

#	Article	IF	CITATIONS
1	Two-phase dynamics of p53 in the DNA damage response. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8990-8995.	7.1	275
2	Cell fate decision mediated by p53 pulses. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 12245-12250.	7.1	211
3	Resonance-enhanced signal detection and transduction in the Hodgkin-Huxley neuronal systems. Physical Review E, 2001, 63, 021907.	2.1	97
4	Interlinking positive and negative feedback loops creates a tunable motif in gene regulatory networks. Physical Review E, 2009, 80, 011926.	2.1	95
5	Propagation of Firing Rate in a Feed-Forward Neuronal Network. Physical Review Letters, 2006, 96, 018103.	7.8	75
6	Modeling the interplay between the HIF-1 and p53 pathways in hypoxia. Scientific Reports, 2015, 5, 13834.	3.3	60
7	Coordination between Cell Cycle Progression and Cell Fate Decision by the p53 and E2F1 Pathways in Response to DNA Damage. Journal of Biological Chemistry, 2010, 285, 31571-31580.	3.4	56
8	Robustness analysis of cellular memory in an autoactivating positive feedback system. FEBS Letters, 2008, 582, 3776-3782.	2.8	42
9	Linking fast and slow positive feedback loops creates an optimal bistable switch in cell signaling. Physical Review E, 2007, 76, 031924.	2.1	41
10	Modeling the regulation of p53 activation by HIFâ€1 upon hypoxia. FEBS Letters, 2019, 593, 2596-2611.	2.8	39
11	Gene transcription in bursting: a unified mode for realizing accuracy and stochasticity. Biological Reviews, 2019, 94, 248-258.	10.4	37
12	A Two-Step Mechanism for Cell Fate Decision by Coordination of Nuclear and Mitochondrial p53 Activities. PLoS ONE, 2012, 7, e38164.	2.5	31
13	Regulation of the DNA Damage Response by p53 Cofactors. Biophysical Journal, 2012, 102, 2251-2260.	0.5	28
14	Cell type–dependent bimodal p53 activation engenders a dynamic mechanism of chemoresistance. Science Advances, 2018, 4, eaat5077.	10.3	28
15	A Common Cortical Circuit Mechanism for Perceptual Categorical Discrimination and Veridical Judgment. PLoS Computational Biology, 2008, 4, e1000253.	3.2	24
16	Modeling the response of a tumor-suppressive network to mitogenic and oncogenic signals. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 5337-5342.	7.1	24
17	Coordination of the Nuclear and Cytoplasmic Activities of p53 in Response to DNA Damage. Biophysical Journal, 2010, 99, 1696-1705.	0.5	22
18	Involvement of miR-605 and miR-34a in the DNA Damage Response Promotes Apoptosis Induction. Biophysical Journal, 2014, 106, 1792-1800.	0.5	20

Feng Liu

#	Article	IF	CITATIONS
19	Realization of tristability in a multiplicatively coupled dual-loop genetic network. Scientific Reports, 2016, 6, 28096.	3.3	15
20	Modulation of dynamic modes by interplay between positive and negative feedback loops in gene regulatory networks. Physical Review E, 2018, 97, 042412.	2.1	15
21	Roles of cellular heterogeneity, intrinsic and extrinsic noise in variability of p53 oscillation. Scientific Reports, 2019, 9, 5883.	3.3	15
22	Synaptic mechanisms for motor variability in a feedforward network. Science Advances, 2020, 6, .	10.3	15
23	Dynamic Mechanism for the Transcription Apparatus Orchestrating Reliable Responses to Activators. Scientific Reports, 2012, 2, 422.	3.3	14
24	Coordination between p21 and DDB2 in the Cellular Response to UV Radiation. PLoS ONE, 2013, 8, e80111.	2.5	14
25	Interplay between Mdm2 and HIPK2 in the DNA damage response. Journal of the Royal Society Interface, 2014, 11, 20140319.	3.4	13
26	Signal propagation through feedforward neuronal networks with different operational modes. Europhysics Letters, 2009, 85, 38006.	2.0	11
27	Impact of time delays on oscillatory dynamics of interlinked positive and negative feedback loops. Physical Review E, 2016, 94, 052413.	2.1	10
28	Reversible Phosphorylation Subserves Robust Circadian Rhythms by Creating a Switch in Inactivating the Positive Element. Biophysical Journal, 2009, 97, 2867-2875.	0.5	9
29	Regulation of Tip60â€dependent p53 acetylation in cell fate decision. FEBS Letters, 2019, 593, 13-22.	2.8	8
30	Reconciling the concurrent fast and slow cycling of proteins on gene promoters. Journal of the Royal Society Interface, 2014, 11, 20140253.	3.4	7
31	Kinetics of transcription initiation directed by multiplecis-regulatory elements on thegInAp2promoter. Nucleic Acids Research, 2016, 44, 10530-10538.	14.5	7
32	Structured Synaptic Inhibition Has a Critical Role in Multiple-Choice Motion-Discrimination Tasks. Journal of Neuroscience, 2014, 34, 13444-13457.	3.6	5
33	Modeling the crosstalk between the circadian clock and ROS in Neurospora crassa. Journal of Theoretical Biology, 2018, 458, 125-132.	1.7	5
34	Background synaptic input modulates the visuospatial working memory. Physical Review E, 2021, 104, 024416.	2.1	4
35	A switchâ€like dynamic mechanism for the initiation of replicative senescence. FEBS Letters, 2014, 588, 4369-4374.	2.8	2
36	Modularization of grid cells constrained by the pyramidal patch lattice. IScience, 2021, 24, 102301.	4.1	2