List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184310/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Modeling of Electrorheological Fluids. , 2022, , 140-151.		3
2	Effect of the Molecular Structure Change of a Matrix Polymer (Nylon 6) on the Deformation of Dispersed Phase (a Thermotropic Liquid Crystalline Polymer) Droplets in Shear Flow. ACS Omega, 2022, 7, 3341-3347.	1.6	1
3	Effects of non-magnetic carbon nanotubes on the performance and stability of magnetorheological fluids containing FeCo-deposited carbon nanotubes. Korea Australia Rheology Journal, 2022, 34, 137-146.	0.7	3
4	Porous Fe3O4 submicron particles for use in magnetorheological fluids. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 613, 126066.	2.3	8
5	Strong and Stable Magnetorheological Fluids Based on Flaky Sendust-Co _{0.4} Fe _{0.4} Ni _{0.2} Nanocomposite Particles. ACS Applied Materials & Interfaces, 2021, 13, 26581-26589.	4.0	9
6	Effect of Particle Shape Anisotropy on the Performance and Stability of Magnetorheological Fluids. ACS Applied Electronic Materials, 2021, 3, 2526-2533.	2.0	11
7	Synergistic Effects of Nonmagnetic Carbon Nanotubes on the Performance and Stability of Magnetorheological Fluids Containing Carbon Nanotube-Co _{0.4} Fe _{0.4} Ni _{0.2} Nanocomposite Particles. Nano Letters, 2021, 21, 4973-4980.	4.5	12
8	Hierarchically Structured Fe ₃ O ₄ Nanoparticles for High-Performance Magnetorheological Fluids with Long-Term Stability. ACS Applied Nano Materials, 2020, 3, 10931-10940.	2.4	21
9	Novel Dual-Curing Process for a Stereolithographically Printed Part Triggers a Remarkably Improved Interlayer Adhesion and Excellent Mechanical Properties. Langmuir, 2020, 36, 9250-9258.	1.6	14
10	Binderâ€Free Highâ€Performance MXene Supercapacitors Fabricated by a Simple Electrospray Deposition Technique. Advanced Materials Interfaces, 2020, 7, 2000750.	1.9	13
11	Core–shell-structured Fe3O4 nanocomposite particles for high-performance/stable magnetorheological fluids: preparation and characteristics. Journal of the Korean Ceramic Society, 2020, 57, 608-631.	1.1	12
12	Analysis of the flow behavior of electrorheological fluids containing polypyrrole nanoparticles or polypyrrole/silica nanocomposite particles. Rheologica Acta, 2020, 59, 415-423.	1.1	17
13	Long-Living Anions Could Dramatically Change the Overall Physical Properties of a Polyamide (Nylon) Tj ETQq1 I	0.784314 1.6	4 rggT /Overlo
14	Multilayer Structuring of Nonleaded Metal (BiSn)/Polymer/Tungsten Composites for Enhanced γâ€Ray Shielding. Advanced Engineering Materials, 2020, 22, 1901448.	1.6	15
15	Nonisothermal Crystallization Behaviors of Structure-Modified Polyamides (Nylon 6s). ACS Omega, 2020, 5, 29325-29332.	1.6	1
16	Nonisothermal Crystallization Behaviors of Structure-Modified Polyamides (Nylon 6s). ACS Omega, 2020, 5, 29325-29332.	1.6	5
17	Synthesis and characterization of isosorbide based polycarbonates. Polymer, 2019, 179, 121685.	1.8	25
18	Optimum Thermoelectric Performance of Bismuth–Antimony–Telluride Alloy/PEDOT:PSS Nanocomposites Prepared by an Innovative Redox Process. ACS Applied Energy Materials, 2019, 2, 8219-8228.	2.5	18

#	Article	IF	CITATIONS
19	Suspensions of Hollow Polydivinylbenzene Nanoparticles Decorated with Fe ₃ O ₄ Nanoparticles as Magnetorheological Fluids for Microfluidics Applications. ACS Applied Nano Materials, 2019, 2, 6939-6947.	2.4	31
20	Effect of Diamine Addition on Structural Features and Physical Properties of Polyamide 6 Synthesized by Anionic Ring-Opening Polymerization of Îμ-Caprolactam. ACS Omega, 2019, 4, 17117-17124.	1.6	14
21	Static yield stress of a magnetorheological fluid containing pickering emulsion polymerized Fe3O4/polystyrene composite particles. AIP Conference Proceedings, 2019, , .	0.3	1
22	High-Performance Magnetorheological Suspensions of Fe3O4-deposited Carbon Nanotubes with Enhanced Stability. MRS Advances, 2019, 4, 217-224.	0.5	14
23	Rheological and mechanical properties of a novel polyamide 6 synthesized by anionic polymerization of ε-caprolactam in a twin-screw extruder. Polymer, 2019, 177, 196-201.	1.8	15
24	Microwave Absorption and Shielding Property of Fe–Si–Al Alloy/MWCNT/Polymer Nanocomposites. Langmuir, 2019, 35, 6950-6955.	1.6	27
25	Synthesis of novel thermotropic liquid crystalline polymers by a reactive extrusion process. RSC Advances, 2019, 9, 12189-12194.	1.7	8
26	Cobalt-Based Electrolytes for Efficient Flexible Dye-Sensitized Solar Cells. MRS Advances, 2019, 4, 481-489.	0.5	5
27	Recent development of electro-responsive smart electrorheological fluids. Soft Matter, 2019, 15, 3473-3486.	1.2	107
28	Pure Piezoelectricity Generation by a Flexible Nanogenerator Based on Lead Zirconate Titanate Nanofibers. ACS Omega, 2019, 4, 2610-2617.	1.6	52
29	Multilayer-Structured Non-leaded Metal/Polymer Composites for Enhanced X-ray Shielding. MRS Advances, 2018, 3, 1789-1797.	0.5	10
30	High-Performance Magnetorheological Suspensions of Pickering-Emulsion-Polymerized Polystyrene/Fe ₃ O ₄ Particles with Enhanced Stability. Langmuir, 2018, 34, 2807-2814.	1.6	41
31	lconography connecting art and rheology based on Dal۪̉s paintings. Korea Australia Rheology Journal, 2018, 30, 317-321.	0.7	0
32	Effect of Molecular Structure Change on the Melt Rheological Properties of a Polyamide (Nylon 6). ACS Omega, 2018, 3, 16549-16555.	1.6	26
33	Fracture Mechanism Change at a Heterogeneous Polymer–Polymer Interface Reinforced with in Situ Graft Copolymers. Langmuir, 2018, 34, 11027-11033.	1.6	3
34	Searching for a Stable Highâ€Performance Magnetorheological Suspension. Advanced Materials, 2018, 30, e1704769.	11.1	85
35	Synthesis of semiconducting poly(diphenylamine) particles and analysis of their electrorheological properties. Polymer, 2017, 119, 40-49.	1.8	40
36	Core–shell structured mesoporous magnetic nanoparticles and their magnetorheological response. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 524, 79-86.	2.3	25

#	Article	IF	CITATIONS
37	Elastomers built up through the π–π stacking association of polycyclic planar aromatic diimides. RSC Advances, 2017, 7, 46195-46200.	1.7	9
38	A facile synthetic route to novel thermotropic liquid crystalline polymers and characterization of their mesophases. RSC Advances, 2017, 7, 29772-29778.	1.7	3
39	Analysis of the static yield stress for giant electrorheological fluids. Korea Australia Rheology Journal, 2017, 29, 215-218.	0.7	5
40	Polymeric Nanoparticle-Coated Pickering Emulsion-Synthesized Conducting Polyaniline Hybrid Particles and Their Electrorheological Study. ACS Applied Materials & Interfaces, 2017, 9, 44811-44819.	4.0	24
41	Efficient dye-sensitized solar cells with broad absorption and enhanced photo-current generation. RSC Advances, 2016, 6, 56747-56755.	1.7	7
42	Facile fabrication of core/shell structured SiO ₂ /polypyrrole nanoparticles with surface modification and their electrorheology. RSC Advances, 2016, 6, 56495-56502.	1.7	36
43	Efficient Vacuum-Deposited Ternary Organic Solar Cells with Broad Absorption, Energy Transfer, and Enhanced Hole Mobility. ACS Applied Materials & Interfaces, 2016, 8, 1214-1219.	4.0	26
44	Static yield stress of a magnetorheological fluid containing Pickering emulsion polymerized Fe 2 O 3 /polystyrene composite particles. Journal of Colloid and Interface Science, 2016, 463, 272-278.	5.0	35
45	Fabrication and magnetic stimuli-response of polydopamine-coated core–shell structured carbonyl iron microspheres. Colloid and Polymer Science, 2016, 294, 329-337.	1.0	20
46	Potential of Polarized PVDF/Carbon Nanotube Nanocomposite Scaffolds for Cell Growth. Materials Research Society Symposia Proceedings, 2015, 1718, 15-20.	0.1	0
47	Resonant Multiple Light Scattering for Photon Harvest Enhancement in Dye-Sensitized Solar Cells. Materials Research Society Symposia Proceedings, 2015, 1737, 38.	0.1	0
48	Enhancement of \hat{I}^2 -phase in PVDF by electrospinning. AIP Conference Proceedings, 2015, , .	0.3	31
49	Modeling and analysis of electrorheological suspensions in shear flow. AIP Conference Proceedings, 2015, , .	0.3	2
50	Enhanced X-ray Shielding Ability of Polymer–Nonleaded Metal Composites by Multilayer Structuring. Industrial & Engineering Chemistry Research, 2015, 54, 5968-5973.	1.8	54
51	Nonisothermal crystallization behaviors of nanocomposites of poly(vinylidene fluoride) and multiwalled carbon nanotubes. Polymer, 2015, 62, 11-18.	1.8	26
52	Yield stress analysis of electrorheological suspensions containing core–shell structured anisotropic poly(methyl methacrylate) microparticles. Polymers for Advanced Technologies, 2015, 26, 117-120.	1.6	11
53	Nonisothermal crystallization behaviors of nanocomposites prepared by in situ polymerization of high-density polyethylene on tungsten oxide particles. Macromolecular Research, 2015, 23, 265-272.	1.0	4
54	Efficient Vacuumâ€Deposited Tandem Organic Solar Cells with Fill Factors Higher Than Singleâ€Junction Subcells. Advanced Energy Materials, 2015, 5, 1500228.	10.2	10

#	Article	IF	CITATIONS
55	Magnetorheology of Core–Shell Structured Carbonyl Iron/Polystyrene Foam Microparticles Suspension with Enhanced Stability. Macromolecules, 2015, 48, 7311-7319.	2.2	77
56	Effect of Elongational Deformation on the Î'-Phase Formation of Poly(vinylidene Fluoride)/Multiwalled Carbon Nanotube Composites and Their Piezoelectric Properties. Macromolecular Symposia, 2014, 346, 7-13.	0.4	8
57	Core-Shell Structured Electro- and Magneto-Responsive Materials: Fabrication and Characteristics. Materials, 2014, 7, 7460-7471.	1.3	36
58	Electrorheological activity generation by graphene oxide coating on low-dielectric silica particles. RSC Advances, 2014, 4, 62644-62650.	1.7	30
59	Effect of crosslinking reaction on the electromagnetic interference shielding of a Fe–Si–Al alloy (Sendust)/polymer composite at high frequency. Polymers for Advanced Technologies, 2014, 25, 1366-1370.	1.6	14
60	Modeling and analysis of an electrorheological flow behavior containing semiconducting graphene oxide/polyaniline composite particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 363-367.	2.3	26
61	Polyethylene/boron-containing composites for radiation shielding. Thermochimica Acta, 2014, 585, 5-9.	1.2	132
62	Resonant Multiple Light Scattering for Enhanced Photon Harvesting in Dye ensitized Solar Cells. Advanced Materials, 2014, 26, 5192-5197.	11.1	31
63	Dye-Sensitized Solar Cells: Resonant Multiple Light Scattering for Enhanced Photon Harvesting in Dye-Sensitized Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5191-5191.	11.1	1
64	Core-Shell Structured Polystyrene Coated Carbonyl Iron Microspheres and their Magnetorheology. IEEE Transactions on Magnetics, 2014, 50, 1-4.	1.2	22
65	Highly Efficient Vacuum-Processed Organic Solar Cells Containing Thieno[3,2- <i>b</i>]thiophene-thiazole. Journal of Physical Chemistry C, 2014, 118, 11559-11565.	1.5	21
66	Wear behavior of in situ polymerized carbon nanotube/ultra high molecular weight polyethylene composites. Macromolecular Research, 2013, 21, 965-970.	1.0	19
67	Analysis of giant electrorheological fluids. Journal of Colloid and Interface Science, 2013, 402, 90-93.	5.0	12
68	Enhanced charge collection efficiency of dye-sensitized solar cells based on size-tunable hierarchically structured TiO2beads. Journal of Materials Chemistry A, 2013, 1, 1359-1367.	5.2	17
69	Pickering-Emulsion-Polymerized Polystyrene/Fe ₂ O ₃ Composite Particles and Their Magnetoresponsive Characteristics. Langmuir, 2013, 29, 4959-4965.	1.6	122
70	Enhanced Piezoelectric Properties of Electrospun Poly(vinylidene fluoride)/Multiwalled Carbon Nanotube Composites Due to High β-Phase Formation in Poly(vinylidene fluoride). Journal of Physical Chemistry C, 2013, 117, 11791-11799.	1.5	195
71	Core–shell structured graphene oxide-adsorbed anisotropic poly(methyl methacrylate) microparticles and their electrorheology. RSC Advances, 2013, 3, 11723.	1.7	32
72	Facile Fabrication of Chemically Grafted Graphene Oxide–Poly(glycidyl methacrylate) Composite Microspheres and Their Electrorheology. Macromolecular Chemistry and Physics, 2013, 214, 1415-1422.	1.1	28

#	Article	IF	CITATIONS
73	A simplified model for analyzing the flow behavior of electrorheological fluids containing silica nanoparticle-decorated polyaniline nanofibers. Soft Matter, 2012, 8, 4659.	1.2	50
74	Modeling and Analysis of Electrorheological Suspensions in Shear Flow. Langmuir, 2012, 28, 3077-3084.	1.6	87
75	Low-Temperature Fabrication of TiO ₂ Electrodes for Flexible Dye-Sensitized Solar Cells Using an Electrospray Process. ACS Applied Materials & Interfaces, 2012, 4, 3308-3315.	4.0	74
76	Enhanced Interfacial Adhesion between an Amorphous Polymer (Polystyrene) and a Semicrystalline Polymer [a Polyamide (Nylon 6)]. ACS Applied Materials & Interfaces, 2011, 3, 2622-2629.	4.0	12
77	Electrospray Preparation of Hierarchically-structured Mesoporous TiO ₂ Spheres for Use in Highly Efficient Dye-Sensitized Solar Cells. ACS Applied Materials & Interfaces, 2011, 3, 2719-2725.	4.0	116
78	Core–Shell Structured Carbonyl Iron Microspheres Prepared via Dual-Step Functionality Coatings and Their Magnetorheological Response. ACS Applied Materials & Interfaces, 2011, 3, 3487-3495.	4.0	149
79	Analysis of the flow behavior of electrorheological fluids with the aligned structure reformation. Polymer, 2011, 52, 5695-5698.	1.8	39
80	A new yield stress scaling function for electrorheological fluids. Journal of Non-Newtonian Fluid Mechanics, 2011, 166, 241-243.	1.0	50
81	Interfacial Adhesion between an Amorphous Polymer (Polystyrene) and a Semi-crystalline Polymer (Polyamide-nylon 6). , 2011, , .		Ο
82	Reactive Interfacial Adhesion Between an Amorphous Polymer (Surface-Modified Polystyrene) and a Semicrystalline Polymer (Polyamide (Nylon 6)). International Journal of Material Forming, 2010, 3, 583-586.	0.9	0
83	Development of A Manufacturing Process for An Organicinorganic Nanocomposite and Its Physical Property Characterization. International Journal of Material Forming, 2010, 3, 691-694.	0.9	1
84	Nonisothermal Crystallization Behaviors of Nanocomposites Prepared by <i>In Situ</i> Polymerization of High-Density Polyethylene on Multiwalled Carbon Nanotubes. Macromolecules, 2010, 43, 10545-10553.	2.2	59
85	Sequential Coating of Magnetic Carbonyliron Particles with Polystyrene and Multiwalled Carbon Nanotubes and Its Effect on Their Magnetorheology. ACS Applied Materials & Interfaces, 2010, 2, 54-60.	4.0	114
86	Piezoelectric composite forming and its characterization. International Journal of Material Forming, 2009, 2, 869-871.	0.9	2
87	Preparation of PE/MWNT nanocomposites by In-situ metallocene polymerization. International Journal of Material Forming, 2009, 2, 873-875.	0.9	2
88	Piezoelectric properties of poly(vinylidene fluoride) and carbon nanotube blends: Î ² -phase development. Physical Chemistry Chemical Physics, 2009, 11, 10506.	1.3	223
89	Effect of Temperature on the Interfacial Behavior of a Polystyrene- <i>b</i> -poly(methyl methacrylate) Diblock Copolymer at the Air/Water Interface. Langmuir, 2008, 24, 2381-2386.	1.6	36
90	In Situ Compatibilizer Reinforced Interface between an Amorphous Polymer (Polystyrene) and a Semicrystalline Polymer (Polyamide Nylon 6). Macromolecules, 2007, 40, 5953-5958.	2.2	14

#	Article	IF	CITATIONS
91	Crystallization of a Polypropylene Terpolymer Made by a Zieglerâ^'Natta Catalyst:  Formation of γ-phase. Journal of Physical Chemistry B, 2007, 111, 3571-3575.	1.2	17
92	Organic/inorganic hybrid of polyaniline/BaTiO3 composites and their electrorheological and dielectric characteristics. Journal of Applied Polymer Science, 2007, 105, 1853-1860.	1.3	52
93	Nonisothermal crystallization behaviors of a polyolefin terpolymer and itsÂfoam. Polymer, 2007, 48, 3844-3849.	1.8	20
94	Coating of magnetic particle with polystyrene and its magnetorheological characterization. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 4178-4181.	0.8	22
95	In Situ Compatibilizer-Reinforced Interface between a Flexible Polymer (a Functionalized) Tj ETQq1 1 0.784314 rg 3062-3067.	gBT /Over 1.6	lock 10 Tf 50 20
96	Nonwetting Process for Achieving Surface Functionalization of Chemically Stable Poly(tetrafluoroethylene). Langmuir, 2005, 21, 3432-3435.	1.6	18
97	Thermal properties of biaxially deformedin situ composites. Polymer Engineering and Science, 2004, 44, 1419-1428.	1.5	1
98	Enhanced interfacial adhesion between polypropylene and nylon 6 by in situ reactive compatibilization. Polymer, 2004, 45, 8573-8581.	1.8	39
99	Overcoming the "Upper Bound―in Polymeric Gas-Separation Membranes. Angewandte Chemie, 2003, 115, 1177-1181.	1.6	2
100	Overcoming the "Upper Bound―in Polymeric Gas-Separation Membranes. Angewandte Chemie - International Edition, 2003, 42, 1145-1149.	7.2	9
101	Modeling of the transient viscosity for polymer melts after startup of shearing and elongational deformations. Journal of Applied Polymer Science, 2003, 88, 510-515.	1.3	1
102	Effect of Surface Modification on the Interfacial Tension between the Melts of High-Density Polyethylene and Nylon 66:Â Correlation between Rheology and Morphology. Langmuir, 2003, 19, 2696-2704.	1.6	12
103	Enhancement of Interfacial Adhesion between Polypropylene and Nylon 6:Â Effect of Surface Functionalization by Low-Energy Ion-Beam Irradiation. Macromolecules, 2002, 35, 1267-1275.	2.2	40
104	Surface Modification of Poly(ether imide) by Low-Energy Ion-Beam Irradiation and Its Effect on the Polymer Blend Interface. Langmuir, 2002, 18, 6185-6192.	1.6	10
105	Effect of a compatibilizer on the structural development of a thermotropic liquid crystalline polymer/polystyrene blend. Polymer Engineering and Science, 2002, 42, 951-960.	1.5	9
106	Effect of the compatibilizer on the physical properties of biaxially deformedin situ composites. Polymer Engineering and Science, 2002, 42, 2401-2411.	1.5	4
107	HDPE Surface Functionalization by Low-Energy Ion-Beam Irradiation under a Reactive O2Environment and Its Effect on the HDPE/Nylon 66 Blend. Macromolecules, 2001, 34, 2546-2558.	2.2	31
108	Nonisothermal crystallization behavior of poly(aryl ether ether ketone). Polymer Engineering and Science, 2001, 41, 940-945.	1.5	19

YONGSOK SEO

#	Article	IF	CITATIONS
109	Nonisothermal crystallization kinetics of polytetrafluoroethylene. Polymer Engineering and Science, 2000, 40, 1293-1297.	1.5	24
110	Structure development during flow of ternary blends of a polyamide (nylon 66), a thermotropic liquid crystalline polymer (poly(ester amide)) and a functionalized polypropylene. Polymer, 1999, 40, 4483-4492.	1.8	27
111	Morphology and properties of compatibilized ternary blends (nylon 6/a thermotropic liquid) Tj ETQq1 1 0.784314 1999, 40, 4441-4450.	rgBT /Ove 1.8	erlock 10 Tf 30
112	Deformation of thermotropic liquid crystalline polymer droplets dispersed in a polyamide. Macromolecular Symposia, 1999, 147, 201-208.	0.4	3
113	Structure Development during Flow of Ternary Blends of a Polyamide (Nylon 46), a Thermotropic Liquid Crystalline Polymer (Poly(ester amide)), and a Thermoplastic Elastomer (EPDM). Macromolecules, 1997, 30, 2978-2988.	2.2	48
114	Effect of die geometry on the structural development of a thermotropic liquid crystalline polymer in a thermoplastic elastomer matrix. Polymer Engineering and Science, 1995, 35, 1621-1628.	1.5	15
115	Miscibility and Mechanical Properties of Poly(ether imide)/Liquid Crystalline Poly(ester imide) Blends. International Polymer Processing, 1994, 9, 266-272.	0.3	5
116	Characterization and processing of blends of poly(ether imide) with thermotropic liquid crystalline polymer. Polymer, 1994, 35, 519-531.	1.8	67
117	Influence of the mechanical properties of the dispersed phase upon the behaviour of nylon/rubber blends: crosslinking effect. Polymer, 1993, 34, 1667-1676.	1.8	37