
Scott Earley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2184069/publications.pdf Version: 2024-02-01

SCOTT FADLEY

#	Article	IF	CITATIONS
1	TRPV4 Forms a Novel Ca 2+ Signaling Complex With Ryanodine Receptors and BK Ca Channels. Circulation Research, 2005, 97, 1270-1279.	2.0	403
2	Critical Role for Transient Receptor Potential Channel TRPM4 in Myogenic Constriction of Cerebral Arteries. Circulation Research, 2004, 95, 922-929.	2.0	350
3	Transient Receptor Potential Channels in the Vasculature. Physiological Reviews, 2015, 95, 645-690.	13.1	325
4	Endothelium-Dependent Cerebral Artery Dilation Mediated by TRPA1 and Ca ²⁺ -Activated K ⁺ Channels. Circulation Research, 2009, 104, 987-994.	2.0	230
5	TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1096-H1102.	1.5	187
6	TRPC3 mediates pyrimidine receptor-induced depolarization of cerebral arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2055-H2061.	1.5	142
7	Protein kinase C regulates vascular myogenic tone through activation of TRPM4. American Journal of Physiology - Heart and Circulatory Physiology, 2007, 292, H2613-H2622.	1.5	141
8	Localized TRPA1 channel Ca ²⁺ signals stimulated by reactive oxygen species promote cerebral artery dilation. Science Signaling, 2015, 8, ra2.	1.6	139
9	TRANSIENT RECEPTOR POTENTIAL (TRP) CHANNELS, VASCULAR TONE AND AUTOREGULATION OF CEREBRAL BLOOD FLOW. Clinical and Experimental Pharmacology and Physiology, 2008, 35, 1116-1120.	0.9	116
10	TRPA1 channels in the vasculature. British Journal of Pharmacology, 2012, 167, 13-22.	2.7	102
11	A Dietary Agonist of Transient Receptor Potential Cation Channel V3 Elicits Endothelium-Dependent Vasodilation. Molecular Pharmacology, 2010, 77, 612-620.	1.0	100
12	A PLCγ1-Dependent, Force-Sensitive Signaling Network in the Myogenic Constriction of Cerebral Arteries. Science Signaling, 2014, 7, ra49.	1.6	100
13	Pharmacological inhibition of TRPM4 hyperpolarizes vascular smooth muscle. American Journal of Physiology - Cell Physiology, 2010, 299, C1195-C1202.	2.1	92
14	Ca ²⁺ release from the sarcoplasmic reticulum is required for sustained TRPM4 activity in cerebral artery smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 299, C279-C288.	2.1	91
15	Neuron-Specific (Pro)renin Receptor Knockout Prevents the Development of Salt-Sensitive Hypertension. Hypertension, 2014, 63, 316-323.	1.3	88
16	Transient receptor potential channels and vascular function. Clinical Science, 2010, 119, 19-36.	1.8	86
17	Cytochrome <i>P</i> -450 epoxygenase products contribute to attenuated vasoconstriction after chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H127-H136.	1.5	77
18	Estradiol attenuates hypoxia-induced pulmonary endothelin-1 gene expression. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2002, 283, L86-L93.	1.3	74

#	Article	lF	CITATIONS
19	Guidelines for the measurement of vascular function and structure in isolated arteries and veins. American Journal of Physiology - Heart and Circulatory Physiology, 2021, 321, H77-H111.	1.5	74
20	Endothelium-dependent Cerebral Artery Dilation Mediated by Transient Receptor Potential and Ca2+-activated K+ Channels. Journal of Cardiovascular Pharmacology, 2011, 57, 148-153.	0.8	67
21	Optical Recording Reveals Novel Properties of CSK1016790A-Induced Vanilloid Transient Receptor Potential Channel TRPV4 Activity in Primary Human Endothelial Cells. Molecular Pharmacology, 2012, 82, 464-472.	1.0	67
22	Unitary TRPV3 channel Ca ²⁺ influx events elicit endothelium-dependent dilation of cerebral parenchymal arterioles. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 309, H2031-H2041.	1.5	66
23	Recruitment of Dynamic Endothelial <scp><scp>Ca</scp></scp> ²⁺ Signals by the <scp>TRPA</scp> 1 Channel Activator <scp>AITC</scp> in Rat Cerebral Arteries. Microcirculation, 2013, 20, 138-148.	1.0	64
24	Neuroprotective effects of TRPA1 channels in the cerebral endothelium following ischemic stroke. ELife, 2018, 7, .	2.8	64
25	Brain endothelial cell TRPA1 channels initiate neurovascular coupling. ELife, 2021, 10, .	2.8	63
26	Local Regulation of Arterial L-Type Calcium Channels by Reactive Oxygen Species. Circulation Research, 2010, 107, 1002-1010.	2.0	62
27	Disruption of smooth muscle gap junctions attenuates myogenic vasoconstriction of mesenteric resistance arteries. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H2677-H2686.	1.5	61
28	Ca _V 3.2 Channels and the Induction of Negative Feedback in Cerebral Arteries. Circulation Research, 2014, 115, 650-661.	2.0	61
29	Vasoconstriction resulting from dynamic membrane trafficking of TRPM4 in vascular smooth muscle cells. American Journal of Physiology - Cell Physiology, 2010, 299, C682-C694.	2.1	59
30	Transient Receptor Potential Channels and Endothelial Cell Calcium Signaling. , 2019, 9, 1249-1277.		58
31	Vanilloid and Melastatin Transient Receptor Potential Channels in Vascular Smooth Muscle. Microcirculation, 2010, 17, 237-249.	1.0	53
32	TRP channel Ca ²⁺ sparklets: fundamental signals underlying endothelium-dependent hyperpolarization. American Journal of Physiology - Cell Physiology, 2013, 305, C999-C1008.	2.1	53
33	TRPM4 channels in smooth muscle function. Pflugers Archiv European Journal of Physiology, 2013, 465, 1223-1231.	1.3	52
34	The angiotensin II receptor type 1b is the primary sensor of intraluminal pressure in cerebral artery smooth muscle cells. Journal of Physiology, 2017, 595, 4735-4753.	1.3	52
35	Endogenous cytosolic Ca2+ buffering is necessary for TRPM4 activity in cerebral artery smooth muscle cells. Cell Calcium, 2012, 51, 82-93.	1.1	51
36	Nanoscale coupling of junctophilin-2 and ryanodine receptors regulates vascular smooth muscle cell contractility. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 21874-21881.	3.3	37

#	Article	IF	CITATIONS
37	Calcineurin/Nuclear Factor of Activated T Cells–Coupled Vanilliod Transient Receptor Potential Channel 4 Ca ²⁺ Sparklets Stimulate Airway Smooth Muscle Cell Proliferation. American Journal of Respiratory Cell and Molecular Biology, 2014, 50, 1064-1075.	1.4	35
38	Endothelial control of vasodilation: integration of myoendothelial microdomain signalling and modulation by epoxyeicosatrienoic acids. Pflugers Archiv European Journal of Physiology, 2014, 466, 389-405.	1.3	34
39	Redox regulation of transient receptor potential channels in the endothelium. Microcirculation, 2017, 24, e12329.	1.0	33
40	Endothelium-dependent blunting of myogenic responsiveness after chronic hypoxia. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H2202-H2209.	1.5	31
41	Novel role for the transient potential receptor melastatin 4 channel in guinea pig detrusor smooth muscle physiology. American Journal of Physiology - Cell Physiology, 2013, 304, C467-C477.	2.1	31
42	Microtubule structures underlying the sarcoplasmic reticulum support peripheral coupling sites to regulate smooth muscle contractility. Science Signaling, 2017, 10, .	1.6	31
43	Nanoscale remodeling of ryanodine receptor cluster size underlies cerebral microvascular dysfunction in Duchenne muscular dystrophy. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E9745-E9752.	3.3	31
44	TRPM4 channel: a new player in urinary bladder smooth muscle function in rats. American Journal of Physiology - Renal Physiology, 2013, 304, F918-F929.	1.3	30
45	Pressure-induced smooth muscle cell depolarization in pulmonary arteries from control and chronically hypoxic rats does not cause myogenic vasoconstriction. Journal of Applied Physiology, 2005, 98, 1119-1124.	1.2	28
46	Robust Internal Elastic Lamina Fenestration in Skeletal Muscle Arteries. PLoS ONE, 2013, 8, e54849.	1.1	26
47	Unaltered vasoconstrictor responsiveness after iNOS inhibition in lungs from chronically hypoxic rats. American Journal of Physiology - Lung Cellular and Molecular Physiology, 1999, 276, L122-L130.	1.3	25
48	Hypoxia-induced pulmonary endothelin-1 expression is unaltered by nitric oxide. Journal of Applied Physiology, 2002, 92, 1152-1158.	1.2	25
49	TRPML1 channels initiate Ca ²⁺ sparks in vascular smooth muscle cells. Science Signaling, 2020, 13, .	1.6	25
50	Developmental differences in pulmonary eNOS expression in response to chronic hypoxia in the rat. Journal of Applied Physiology, 2002, 93, 311-318.	1.2	24
51	Increased nitric oxide production following chronic hypoxia contributes to attenuated systemic vasoconstriction. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H1655-H1661.	1.5	24
52	SOCE mediated by STIM and Orai is essential for pacemaker activity in the interstitial cells of Cajal in the gastrointestinal tract. Science Signaling, 2018, 11, .	1.6	23
53	STIM1-dependent peripheral coupling governs the contractility of vascular smooth muscle cells. ELife, 2022, 11, .	2.8	23
54	48-h Hypoxic exposure results in endothelium-dependent systemic vascular smooth muscle cell hyperpolarization. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2002, 283, R79-R85.	0.9	21

#	Article	IF	CITATIONS
55	Control of urinary bladder smooth muscle excitability by the TRPM4 channel modulator 9-phenanthrol. Channels, 2013, 7, 537-540.	1.5	19
56	Isolation and Cannulation of Cerebral Parenchymal Arterioles. Journal of Visualized Experiments, 2016, , .	0.2	19
57	Reduction in TRPC4 expression specifically attenuates G-protein coupled receptor-stimulated increases in intracellular calcium in human myometrial cells. Cell Calcium, 2009, 46, 73-84.	1.1	17
58	Basal protein kinase Cδ activity is required for membrane localization and activity of TRPM4 channels in cerebral artery smooth muscle cells. Channels, 2011, 5, 210-214.	1.5	17
59	Regulation of Cerebral Artery Smooth Muscle Membrane Potential by Ca ²⁺ â€Activated Cation Channels. Microcirculation, 2013, 20, 337-347.	1.0	17
60	Differential expression of angiotensin II type 1 receptor subtypes within the cerebral microvasculature. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 318, H461-H469.	1.5	17
61	Distribution and Evolution of Sequence Characteristics in theE. coliGenome. Journal of Biomolecular Structure and Dynamics, 1986, 4, 291-307.	2.0	16
62	Transient Receptor Potential Channel Ankyrin 1: A Unique Regulator of Vascular Function. Cells, 2021, 10, 1167.	1.8	15
63	Nitric Oxide Signals Through IRAG to Inhibit TRPM4 Channels and Dilate Cerebral Arteries. Function, 2021, 2, zqab051.	1.1	15
64	The physiological sensor channels TRP and piezo: Nobel Prize in Physiology or Medicine 2021. Physiological Reviews, 2022, 102, 1153-1158.	13.1	15
65	The intracellular Ca ²⁺ release channel TRPML1 regulates lower urinary tract smooth muscle contractility. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 30775-30786.	3.3	13
66	Overexpression of the Neuronal Human (Pro)renin Receptor Mediates Angiotensin II-Independent Blood Pressure Regulation in the Central Nervous System. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 314, H580-H592.	1.5	11
67	Dopaminergic Neurotoxicants Cause Biphasic Inhibition of Purinergic Calcium Signaling in Astrocytes. PLoS ONE, 2014, 9, e110996.	1.1	11
68	Central role of Ca2+-dependent regulation of vascular tone in vivo. Journal of Applied Physiology, 2006, 101, 10-11.	1.2	9
69	Identification of polypeptides encoded by cloned pJM1 iron uptake DNA isolated from Vibrio anguillarum 775. Journal of Bacteriology, 1989, 171, 2293-2302.	1.0	8
70	Molecular Diversity of Receptor Operated Channels in Vascular Smooth Muscle. Circulation Research, 2006, 98, 1462-1464.	2.0	8
71	Regulation of vascular tone by transient receptor potential ankyrin 1 channels. Current Topics in Membranes, 2020, 85, 119-150.	0.5	7
72	Functional Significance of Transient Receptor Potential Channels in Vascular Function. Frontiers in Neuroscience, 2006, , 361-376.	0.0	5

#	Article	IF	CITATIONS
73	<i>Serotonin receptors take the TRiPV4 highway in chronic hypoxic pulmonary hypertension.</i> Focus on "TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertensionâ€. American Journal of Physiology - Cell Physiology, 2013, 305, C690-C692.	2.1	4
74	No Static at All. Circulation Research, 2016, 118, 1042-1044.	2.0	4
75	STIM1 is the key that unlocks airway smooth muscle remodeling and hyperresponsiveness during asthma. Cell Calcium, 2022, 104, 102589.	1.1	4
76	A TRPC3 signalling complex promotes cerebral artery remodelling during hypertension. Cardiovascular Research, 2016, 109, 4-5.	1.8	3
77	(Sub)family feud: crosstalk between TRPC channels in vascular smooth muscle cells during vasoconstrictor agonist stimulation. Journal of Physiology, 2010, 588, 3637-3638.	1.3	2
78	Smooth Muscle Cell Ca ²⁺ : Think Locally, Act Globally. Microcirculation, 2013, 20, 279-280.	1.0	1
79	TRPs in the kidney - location, location, location. Acta Physiologica, 2015, 213, 296-297.	1.8	1
80	ANO1, CaV1.2 and IP3R Form a Functional Unit of Excitation-Contraction Coupling during Agonist-Mediated Contraction of Mouse Pulmonary Arterial Smooth Muscle. Biophysical Journal, 2020, 118, 563a-564a.	0.2	1
81	PIP ₂ as the "coin of the realm―for neurovascular coupling. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	1
82	Recruitment of dynamic cerebral artery endothelial Ca2+ signals by the TRPA1 channel activator AITC. FASEB Journal, 2012, 26, 853.2.	0.2	1
83	Cerebral Capillary TRPA1 Channels Mediate Functional Hyperemia via Retrograde Conducted Vasodilation. FASEB Journal, 2018, 32, 843.7.	0.2	1
84	Reply to Boedtkjer and Aalkjaer. American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H687-H688.	1.5	1
85	Sustainable TRPM4 Channel Activity Following Restoration of Cytosolic Calcium Buffering in Freshly Isolated Cerebral Smooth Muscle Cells. Biophysical Journal, 2011, 100, 556a.	0.2	0
86	STIM1 Maintains Stable Peripheral Coupling in Fully Differentiated Contractile Vascular Smooth Muscle Cells Independently of Ca2+ Store Depletion. Biophysical Journal, 2020, 118, 329a.	0.2	0
87	Metabolic Control of Cardiac Pacemaking. Function, 2021, 2, zqab043.	1.1	0
88	TRPA1 mediates NADPH oxidaseâ€dependent cerebral artery dilation (1079.1). FASEB Journal, 2014, 28, 1079.1.	0.2	0
89	Endothelial Cell TRPA1 Channel Activity Delays the Onset of Hypertensionâ€Associated Hemorrhagic Stroke. FASEB Journal, 2015, 29, 795.3.	0.2	0
90	TRPV3 Sparklets Mediate Endotheliumâ€Dependent Dilation of Cerebral Parenchymal Arterioles. FASEB Journal, 2015, 29, 795.2.	0.2	0

#	Article	IF	CITATIONS
91	Microtubules Couple Sarcoplasmic Reticulum Calcium Release to TRPM4 and BK Channel Activation in Cerebral Artery Myocytes. FASEB Journal, 2015, 29, 795.9.	0.2	Ο
92	The Angiotensin II Typeâ€1 Receptor Is a Mechanosensor in Cerebral Parenchymal Arteriole Smooth Muscle Cells. FASEB Journal, 2015, 29, 832.1.	0.2	0
93	Endothelial TRPA1 Channels Are Activated by Hypoxia in Cerebral Arteries and Protect Against Ischemic Damage. FASEB Journal, 2018, 32, 900.5.	0.2	Ο
94	Junctophilinâ€⊋ Supports Functional Coupling Between Type 2 Ryanodine Receptors and BK Channels in Vascular Smooth Muscle Cells. FASEB Journal, 2018, 32, 843.6.	0.2	0
95	Reply to De Mey et al American Journal of Physiology - Heart and Circulatory Physiology, 2022, 322, H683-H684.	1.5	0