Arash Fattah-alhosseini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2183928/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of solution concentration on semiconducting properties of passive films formed on austenitic stainless steels. Corrosion Science, 2010, 52, 205-209.	3.0	199
2	The semiconducting properties of passive films formed on AISI 316 L and AISI 321 stainless steels: A test of the point defect model (PDM). Corrosion Science, 2011, 53, 3186-3192.	3.0	180
3	Comparison of electrochemical behavior between coarse-grained and fine-grained AISI 430 ferritic stainless steel by Mott–Schottky analysis and EIS measurements. Journal of Alloys and Compounds, 2015, 639, 301-307.	2.8	172
4	Effect of particles addition to solution of plasma electrolytic oxidation (PEO) on the properties of PEO coatings formed on magnesium and its alloys: A review. Journal of Magnesium and Alloys, 2020, 8, 799-818.	5.5	150
5	Study of the effect of ZnO nanoparticles addition to PEO coatings on pure titanium substrate: Microstructural analysis, antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution. Journal of Alloys and Compounds, 2018, 740, 330-345.	2.8	93
6	Effects of grain size and dislocation density on strain hardening behavior of ultrafine grained AA1050 processed by accumulative roll bonding. Journal of Alloys and Compounds, 2016, 658, 854-861.	2.8	92
7	On the enhanced antibacterial activity of plasma electrolytic oxidation (PEO) coatings that incorporate particles: A review. Ceramics International, 2020, 46, 20587-20607.	2.3	85
8	Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review. Journal of Magnesium and Alloys, 2021, 9, 1164-1186.	5.5	85
9	Surface characterization and corrosion behavior of calcium phosphate (Ca-P) base composite layer on Mg and its alloys using plasma electrolytic oxidation (PEO): A review. Journal of Magnesium and Alloys, 2021, 9, 21-40.	5.5	82
10	Effect of KOH concentration on the electrochemical behavior of coatings formed by pulsed DC micro-arc oxidation (MAO) on AZ31B Mg alloy. Journal of Alloys and Compounds, 2016, 661, 237-244.	2.8	75
11	The transpassive dissolution mechanism of 316L stainless steel. Electrochimica Acta, 2009, 54, 3645-3650.	2.6	74
12	Passivity of AISI 321 stainless steel in 0.5M H2SO4 solution studied by Mott–Schottky analysis in conjunction with the point defect model. Arabian Journal of Chemistry, 2016, 9, S1342-S1348.	2.3	74
13	Effect of ZrO2 nanoparticles addition to PEO coatings on Ti–6Al–4V substrate: Microstructural analysis, corrosion behavior and antibacterial effect of coatings in Hank's physiological solution. Ceramics International, 2020, 46, 13114-13124.	2.3	69
14	Enhancing corrosion and wear performance of PEO coatings on Mg alloys using graphene and graphene oxide additions: A review. FlatChem, 2021, 27, 100241.	2.8	64
15	Plasma Electrolytic Oxidation (PEO) Process on Commercially Pure Ti Surface: Effects of Electrolyte on the Microstructure and Corrosion Behavior of Coatings. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 4966-4979.	1.1	63
16	Microstructural and electrochemical comparison between TiN coatings deposited through HIPIMS and DCMS techniques. Journal of Alloys and Compounds, 2018, 735, 422-429.	2.8	60
17	Effect of accumulative roll bonding process on the electrochemical behavior of pure copper. Journal of Alloys and Compounds, 2015, 632, 48-52.	2.8	56
18	Effect of immersion time on the passive and electrochemical response of annealed and nano-grained commercial pure titanium in Ringer's physiological solution at 37 ŰC. Materials Science and Engineering C. 2017. 71. 771-779.	3.8	54

#	Article	IF	CITATIONS
19	Antibacterial activity of bioceramic coatings on Mg and its alloys created by plasma electrolytic oxidation (PEO): A review. Journal of Magnesium and Alloys, 2022, 10, 81-96.	5.5	54
20	Influence of grain refinement on the electrochemical behavior of AISI 430 ferritic stainless steel in an alkaline solution. Applied Surface Science, 2016, 360, 921-928.	3.1	53
21	Microstructural evolution, mechanical properties, and strain hardening behavior of ultrafine grained commercial pure copper during the accumulative roll bonding process. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 650, 8-14.	2.6	53
22	Impressive strides in amelioration of corrosion and wear behaviors of Mg alloys using applied polymer coatings on PEO porous coatings: A review. Journal of Magnesium and Alloys, 2022, 10, 1171-1190.	5.5	53
23	Impressive strides in antibacterial performance amelioration of Ti-based implants via plasma electrolytic oxidation (PEO): A review of the recent advancements. Chemical Engineering Journal, 2022, 441, 136003.	6.6	50
24	Effects of Al2O3 Nano-Particles on Corrosion Performance of Plasma Electrolytic Oxidation Coatings Formed on 6061 Aluminum Alloy. Journal of Materials Engineering and Performance, 2016, 25, 5302-5313.	1.2	49
25	Influence of Concentrations of KOH and Na2SiO3 Electrolytes on the Electrochemical Behavior of Ceramic Coatings on 6061 Al Alloy Processed by Plasma Electrolytic Oxidation. Acta Metallurgica Sinica (English Letters), 2016, 29, 274-281.	1.5	48
26	Strengthening mechanisms of nano-grained commercial pure titanium processed by accumulative roll bonding. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 693, 164-169.	2.6	48
27	Optimizing the electrolyte chemistry parameters of PEO coating on 6061 Al alloy by corrosion rate measurement: Response surface methodology. Measurement: Journal of the International Measurement Confederation, 2018, 124, 252-259.	2.5	48
28	The effects of nano- and micro-particles on properties of plasma electrolytic oxidation (PEO) coatings applied on titanium substrates: A review. Surfaces and Interfaces, 2020, 21, 100659.	1.5	48
29	The effects of carbon-based additives on corrosion and wear properties of Plasma electrolytic oxidation (PEO) coatings applied on Aluminum and its alloys: A review. Surfaces and Interfaces, 2020, 21, 100677.	1.5	47
30	The role of grain refinement and film formation potential on the electrochemical behavior of commercial pure titanium in Hank's physiological solution. Materials Science and Engineering C, 2017, 71, 827-834.	3.8	45
31	Sodium Aluminate Concentration Effects on Microstructure and Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on Pure Titanium. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2018, 49, 368-375.	1.1	45
32	Increasing the in-vitro corrosion resistance of AZ31B-Mg alloy via coating with hydroxyapatite using plasma electrolytic oxidation. Journal of Asian Ceramic Societies, 2020, 8, 39-49.	1.0	45
33	Passive and electrochemical response of friction stir processed pure Titanium. Journal of Alloys and Compounds, 2017, 704, 499-508.	2.8	44
34	Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Applied Surface Science, 2019, 478, 623-635.	3.1	44
35	New Promising Ceramic Coatings for Corrosion and Wear Protection of Steels: A Review. Surfaces and Interfaces, 2021, 23, 100997.	1.5	44
36	Improving surface characteristics of PEO coatings of Mg and its alloys with zirconia nanoparticles: a review. Applied Surface Science Advances, 2021, 6, 100131.	2.9	44

#	Article	IF	CITATIONS
37	Microstructure, mechanical properties and electrochemical behavior of AA1050 processed by accumulative roll bonding (ARB). Journal of Alloys and Compounds, 2016, 688, 44-55.	2.8	43
38	Effects of Disodium Phosphate Concentration (Na2HPO4·2H2O) on Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coatings on 2024 Al Alloy. Journal of Materials Engineering and Performance, 2018, 27, 825-834.	1.2	43
39	Effects of Duty Cycle, Current Frequency, and Current Density on Corrosion Behavior of the Plasma Electrolytic Oxidation Coatings on 6061 Al Alloy in Artificial Seawater. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 4681-4692.	1.1	42
40	Effect of KOH Concentration on the Microstructure and Electrochemical Properties of MAO-Coated Mg Alloy AZ31B. Journal of Materials Engineering and Performance, 2015, 24, 3444-3452.	1.2	41
41	Plasma Electrolytic Oxidation Coatings on Pure Ti Substrate: Effects of Na3PO4 Concentration on Morphology and Corrosion Behavior of Coatings in Ringer's Physiological Solution. Journal of Materials Engineering and Performance, 2018, 27, 1343-1351.	1.2	41
42	Influence of different sodium-based additives on corrosion resistance of PEO coatings on pure Ti. Journal of Asian Ceramic Societies, 2019, 7, 247-255.	1.0	41
43	Plasma electrolytic oxidation (PEO) treatment of zinc and its alloys: A review. Surfaces and Interfaces, 2020, 18, 100441.	1.5	41
44	Corrosion behavior assessment of finely dispersed and highly uniform Al/B4C/SiC hybrid composite fabricated via accumulative roll bonding process. Journal of Manufacturing Processes, 2016, 22, 120-126.	2.8	39
45	On the passive and semiconducting behavior of severely deformed pure titanium in Ringer's physiological solution at 37 ŰC: A trial of the point defect model. Materials Science and Engineering C, 2017, 75, 64-71.	3.8	39
46	The passivity of AISI 316L stainless steel in 0.05ÂM H2SO4. Journal of Applied Electrochemistry, 2010, 40, 457-461.	1.5	37
47	Comparison of the wear and corrosion behavior between CrN and AlCrN coatings deposited by Arc-PVD method. Materials Research Express, 2019, 6, 116426.	0.8	36
48	Corrosion inhibition of SAE 1018 carbon steel in H2S and HCl solutions by lemon verbena leaves extract. Measurement: Journal of the International Measurement Confederation, 2016, 94, 787-793.	2.5	35
49	Review of the role of graphene and its derivatives in enhancing the performance of plasma electrolytic oxidation coatings on titanium and its alloys. Applied Surface Science Advances, 2021, 6, 100140.	2.9	35
50	Influence of post-deposition annealing temperature on morphological, mechanical and electrochemical properties of CrN/CrAlN multilayer coating deposited by cathodic arc evaporation-physical vapor deposition process. Surface and Coatings Technology, 2022, 432, 128090.	2.2	32
51	Improving surface features of PEO coatings on titanium and titanium alloys with zirconia particles: A review. Surfaces and Interfaces, 2021, 22, 100888.	1.5	31
52	Systematic optimization of corrosion, bioactivity, and biocompatibility behaviors of calcium-phosphate plasma electrolytic oxidation (PEO) coatings on titanium substrates. Ceramics International, 2022, 48, 6322-6337.	2.3	31
53	Anionic assisted incorporation of WO3 nanoparticles for enhanced electrochemical properties of AZ31 Mg alloy coated via plasma electrolytic oxidation. Journal of Alloys and Compounds, 2022, 916, 165445.	2.8	31
54	Comparing electrochemical behavior of applied CrN/TiN nanoscale multilayer and TiN single-layer coatings deposited by CAE-PVD method. Journal of Asian Ceramic Societies, 2020, 8, 510-518.	1.0	30

#	Article	IF	CITATIONS
55	An Investigation of mechanical properties in accumulative roll bonded nano-grained pure titanium. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 688, 218-224.	2.6	29
56	A review on plasma electrolytic oxidation (PEO) of niobium: Mechanism, properties and applications. Surfaces and Interfaces, 2020, 21, 100719.	1.5	29
57	The influence of cyclic voltammetry passivation on the electrochemical behavior of fine and coarse-grained AISI 430 ferritic stainless steel in an alkaline solution. Journal of Alloys and Compounds, 2016, 677, 42-51.	2.8	28
58	In-vitro electrochemical study of TiB/TiB2 composite coating on titanium in Ringer's solution. Journal of Alloys and Compounds, 2018, 765, 826-834.	2.8	28
59	Role of incorporation of ZnO nanoparticles on corrosion behavior of ceramic coatings developed on AZ31 magnesium alloy by plasma electrolytic oxidation technique. Surfaces and Interfaces, 2021, 22, 100728.	1.5	27
60	Surface characterization of bioceramic coatings on Zr and its alloys using plasma electrolytic oxidation (PEO): A review. Surfaces and Interfaces, 2021, 25, 101283.	1.5	27
61	Incorporating TiO2 nanoparticles to enhance corrosion resistance, cytocompatibility, and antibacterial properties of PEO ceramic coatings on titanium. Ceramics International, 2022, 48, 21005-21024.	2.3	27
62	Microstructural evolution and mechanical properties of ultrafine grained AA2024 processed by accumulative roll bonding. International Journal of Advanced Manufacturing Technology, 2017, 93, 681-689.	1.5	26
63	Corrosion Behavior of Ultra-fine Grained 1050 Aluminum Alloy Fabricated by ARB Process in a Buffer Borate Solution. Journal of Materials Engineering and Performance, 2015, 24, 3386-3393.	1.2	25
64	Structure and corrosion behavior of ZrN/CrN nano-multilayer coating deposited on AISI 304 stainless steel by CAE-PVD technique. Journal of Asian Ceramic Societies, 2020, 8, 460-469.	1.0	25
65	Effect of Multi-pass Friction Stir Processing on the Electrochemical and Corrosion Behavior of Pure Titanium in Strongly Acidic Solutions. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 403-411.	1.1	23
66	Laser surface treatment of pure titanium: Microstructural analysis, wear properties, and corrosion behavior of titanium carbide coatings in Hank's physiological solution. Surfaces and Interfaces, 2020, 20, 100597.	1.5	23
67	Electrochemical and Passive Behaviors of Pure Copper Fabricated by Accumulative Roll-Bonding (ARB) Process. Journal of Materials Engineering and Performance, 2015, 24, 2579-2585.	1.2	22
68	Passivation behavior of a ferritic stainless steel in concentrated alkaline solutions. Journal of Materials Research and Technology, 2015, 4, 423-428.	2.6	22
69	A comparison of electrochemical behavior of coated nanostructured Ta on Ti substrate with pure uncoated Ta in Ringer's physiological solution. Journal of Alloys and Compounds, 2018, 739, 918-925.	2.8	22
70	A study on comparing surface characterization and electrochemical properties of single-layer CrN coating with nanostructured multilayer ZrN/CrN coating in 3.5 wt.% NaCl solution. Surfaces and Interfaces, 2020, 21, 100721.	1.5	22
71	On the study of tensile and strain hardening behavior of a thermomechanically treated ferritic stainless steel. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 669, 480-489.	2.6	21
72	Microstructure and corrosion characterization of the nugget region in dissimilar friction-stir-welded AA5083 and AA1050. Journal of Materials Science, 2019, 54, 777-790.	1.7	21

#	Article	IF	CITATIONS
73	Correlation between the Al content and corrosion resistance of TiAlN coatings applied using a PACVD technique. Journal of Asian Ceramic Societies, 2020, 8, 72-80.	1.0	21
74	Multipurpose surface modification of PEO coatings using tricalcium phosphate addition to improve the bedding for apatite compounds. Journal of Alloys and Compounds, 2021, 877, 160275.	2.8	21
75	Microstructure and corrosion resistance of MAO coatings on AZ31 magnesium. Materials Research Express, 2018, 5, 086510.	0.8	20
76	Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 572-580.	1.1	19
77	Effect of grain refinement on the passive and electrochemical behavior of 2024 Al alloy. Journal of Alloys and Compounds, 2017, 708, 316-322.	2.8	19
78	Effect of ZnO nanoparticles addition to PEO coatings on AZ31B Mg alloy: antibacterial effect and corrosion behavior of coatings in Ringer's physiological solution. Journal of Asian Ceramic Societies, 2021, 9, 1114-1127.	1.0	19
79	Effect of solution pH on the electrochemical behaviour of AISI 304 austenitic and AISI 430 ferritic stainless steels in concentrated acidic media. Egyptian Journal of Petroleum, 2015, 24, 333-341.	1.2	18
80	Passive Behavior of Ultra-Fine-Grained 1050 Aluminum Alloy Produced by Accumulative Roll Bonding in a Borate Buffer Solution. Acta Metallurgica Sinica (English Letters), 2015, 28, 1222-1229.	1.5	18
81	Effect of grain refinement on mechanical and electrochemical properties of ultra-fine grained AA1050 fabricated via ARB process. Journal of Manufacturing Processes, 2016, 22, 269-277.	2.8	18
82	Electrochemical behavior assessment of tantalum in aqueous KOH solutions. International Journal of Refractory Metals and Hard Materials, 2017, 64, 168-175.	1.7	18
83	Effect of Particles Content on Microstructure, Mechanical Properties, and Electrochemical Behavior of Aluminum-Based Hybrid Composite Processed by Accumulative Roll Bonding Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 1343-1354.	1.1	18
84	A study of the electrochemical and tribological properties of TiN/CrN nano-layer coating deposited on carburized-H13 hot-work steel by Arc-PVD technique. Journal of Asian Ceramic Societies, 2021, 9, 270-282.	1.0	18
85	Comparison of the mechanical properties and electrochemical behavior of TiN and CrN single-layer and CrN/TiN multi-layer coatings deposited by PVD method on a dental alloy. Materials Research Express, 2019, 6, 126433.	0.8	17
86	Tailoring the biological response of zirconium implants using zirconia bioceramic coatings: A systematic review. Journal of Trace Elements in Medicine and Biology, 2021, 66, 126756.	1.5	17
87	Effect of immersion time on the electrochemical behaviour of AZ31B alloy. Journal of Alloys and Compounds, 2015, 646, 685-691.	2.8	16
88	Correlation between the duty cycle and the surface characteristics for the nanostructured titanium aluminum nitride coating deposited by pulsed-DC PACVD technique. Journal of Alloys and Compounds, 2017, 711, 530-540.	2.8	16
89	Electrochemical behavior of TiN, CrN and TiN/CrN nanostructured coatings on the nickel-chromium alloy used in dental fixed prosthesis. Journal of Asian Ceramic Societies, 2020, 8, 694-710.	1.0	16
90	Nanoscale architecture of ZrN/CrN coatings: microstructure, composition, mechanical properties and electrochemical behavior. Journal of Materials Research and Technology, 2021, 15, 542-560.	2.6	16

#	Article	IF	CITATIONS
91	Biological, antibacterial activities and electrochemical behavior of borided commercially pure titanium in BSA-containing PBS. Transactions of Nonferrous Metals Society of China, 2020, 30, 944-957.	1.7	16
92	Assessment of microstructural and electrochemical behavior of severely deformed pure copper through equal channel angular pressing. Journal of Alloys and Compounds, 2017, 723, 856-865.	2.8	14
93	Tribological properties of different types of coating materials deposited by cathodic arc-evaporation method on Ni-Cr dental alloy. Materials Research Express, 2019, 6, 056421.	0.8	14
94	Improving the mechanical, tribological, and electrochemical behavior of AISI 304 stainless steel by applying CrN single layer and Cr/CrN multilayer coatings. Wear, 2022, 504-505, 204425.	1.5	14
95	Effect of pH on the Electrochemical Behavior of Tantalum in Borate Buffer Solutions. Journal of Materials Engineering and Performance, 2016, 25, 4199-4209.	1.2	13
96	Strengthening Mechanisms and Electrochemical Behavior of Ultrafine-Grained Commercial Pure Copper Fabricated by Accumulative Roll Bonding. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 3684-3693.	1.1	13
97	Electrochemical Properties of Commercially Pure Ti with TiB/TiB2 Coatings in Hanks' Balanced Salt Solution. Journal of Materials Engineering and Performance, 2019, 28, 1456-1468.	1.2	13
98	A study on the corrosion resistance of ZrN/CrN multilayer nanostructured coating applied on AISI 304 stainless steel using Arc-PVD method in 3.5 wt% NaCl solution. Materials Research Express, 2019, 6, 126426.	0.8	13
99	Effect of Film Formation Potential on Passive Behavior of Ultra-Fine-Grained 1050 Al Alloy Fabricated via ARB Process. Journal of Materials Engineering and Performance, 2016, 25, 1683-1689.	1.2	12
100	Enhancing the Electrochemical Behavior of Pure Copper by Cyclic Potentiodynamic Passivation: A Comparison between Coarse- and Nano-Grained Pure Copper. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2016, 47, 2761-2770.	1.0	12
101	Thermal Modeling of Resistance Spot Welding and Prediction of Weld Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2017, 48, 5415-5423.	1.1	12
102	An investigation regarding semiconducting and passive behaviors of coarse- and nano-structured pure Ta in Ringer's physiological electrolyte: role of anodic passive potential. Materials Research Express, 2018, 5, 106401.	0.8	12
103	Enhancing cytocompatibility, antibacterial activity and corrosion resistance of PEO coatings on titanium using incorporated ZrO2 nanoparticles. Surfaces and Interfaces, 2022, 30, 101967.	1.5	12
104	Investigation of the passive behaviour of AZ31B alloy in alkaline solutions. Journal of Magnesium and Alloys, 2014, 2, 175-180.	5.5	11
105	The Passive Film Characteristics of Cold Deformed Pure Copper. Journal of Materials Engineering and Performance, 2016, 25, 4741-4749.	1.2	11
106	Comparison of anti-corrosive properties between hot alkaline nitrate blackening and hydrothermal blackening routes. Journal of Alloys and Compounds, 2016, 676, 474-480.	2.8	11
107	Effect of grain refinement on mechanical and electrochemical properties of severely deformed pure copper through equal channel angular pressing. Materials Research Express, 2018, 5, 076504.	0.8	11
108	Surface characterization and electrochemical properties of tantalum nitride (TaN) nanostructured coatings produced by reactive DC magnetron sputtering. Surfaces and Interfaces, 2020, 21, 100685.	1.5	11

#	Article	IF	CITATIONS
109	Microstructural characterization and electrochemical behavior of nano/ ultrafine grained pure copper through constrained groove pressing (CGP). Journal of Materials Research and Technology, 2021, 11, 1918-1931.	2.6	11
110	Duty cycle influence on the corrosion behavior of coatings created by plasma electrolytic oxidation on AZ31B magnesium alloy in simulated body fluid. Corrosion Communications, 2021, 3, 62-70.	2.7	11
111	Passive and Semiconducting Properties Assessment of Commercially Pure Tantalum in Hank's Physiological Solution. Journal of Materials Engineering and Performance, 2018, 27, 116-123.	1.2	10
112	Effect of anodic potential on the electrochemical response of passive layers formed on the surface of coarse- and fine-grained pure nickel in borate buffer solutions. Corrosion Science, 2018, 131, 81-93.	3.0	10
113	Effect of friction stir welding on corrosion behavior of pure copper in 3.5 wt.% NaCl solution. Journal of Manufacturing Processes, 2015, 20, 98-103.	2.8	9
114	EIS study of oxidation heatâ€ŧreatment effects on corrosion behavior of Ni10Cu11Fe6Al metallic inert anode inside molten calcium chloride salt. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 605-611.	0.8	8
115	Correlation between crystallographic texture and electrochemical behavior of nano/ultrafine-grained AA2024 alloy processed by accumulative roll bonding process. Journal of Materials Research and Technology, 2022, 18, 4256-4266.	2.6	8
116	Role of chloride in the electrochemical behaviour of AZ31B Mg alloy. International Journal of Materials Research, 2015, 106, 282-287.	0.1	7
117	Electrochemical Behavior of Nano-grained Pure Copper in Dilute Alkaline Solution with Chloride Ion Trace. Journal of Materials Engineering and Performance, 2016, 25, 4478-4483.	1.2	7
118	Effect of Friction Stir Welding on Electrochemical Behavior of Pure Copper. Transactions of the Indian Institute of Metals, 2016, 69, 1423-1434.	0.7	7
119	Simultaneous Investigation of the Effect of Advanced Thermomechanical Treatment and Repetitive Cyclic Voltammetry on the Electrochemical Behavior of AISI 430 Ferritic Stainless Steel. Journal of Materials Engineering and Performance, 2017, 26, 676-684.	1.2	7
120	On the Electrochemical Behavior of PVD Ti-Coated AISI 304 Stainless Steel in Borate Buffer Solution. Journal of Materials Engineering and Performance, 2017, 26, 1792-1800.	1.2	7
121	Electrochemical Behavior Assessment of Micro- and Nano-Grained Commercial Pure Titanium in H2SO4 Solutions. Journal of Materials Engineering and Performance, 2017, 26, 611-620.	1.2	7
122	Comparison of the Electrochemical Behavior of Ti and Nanostructured Ti-Coated AISI 304 Stainless Steel in Strongly Acidic Solutions. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 227-236.	1.0	7
123	On the passive and electrochemical behavior of severely deformed pure Ti through friction stir processing. International Journal of Advanced Manufacturing Technology, 2017, 90, 991-1002.	1.5	7
124	Development of lanthanum doped Ni10Cu11Fe6Al as a new inert anode in molten salt calcium chloride for titanium oxide electrolysis. Journal of Alloys and Compounds, 2021, 876, 159997.	2.8	7
125	Comparison of electrochemical behavior of CrN singleâ€layer coating and Cr/CrN nanolayered coating produced by cathodic arc evaporation physical vapor deposition. International Journal of Applied Ceramic Technology, 2022, 19, 2222-2235.	1.1	7
126	Electrochemical Behavior of Passive Films Formed on the Surface of Coarse-, Fine- and Ultra-fine-Grained AA1050 Based on a Modified PDM. Acta Metallurgica Sinica (English Letters), 2016, 29, 629-637.	1.5	6

#	Article	IF	CITATIONS
127	Effect of Immersion Time on Corrosion Behavior of Single-Phase Alloy and Nanocomposite Bismuth Telluride-Based Thermoelectrics in NaCl Solution. Journal of Materials Engineering and Performance, 2018, 27, 3386-3393.	1.2	6
128	Electrochemical response of n-type bismuth telluride based thermoelectric materials in NaCl solutions: A comparison between a single-phase alloy and a nanocomposite containing MoS2 nano-particles. Arabian Journal of Chemistry, 2020, 13, 1858-1865.	2.3	5
129	Evaluation of Henna Extract Performance on Corrosion Inhibition of API 5L Steel in H2S-Containing Medium and DFT Quantum Computing of Its Constituents. Metals and Materials International, 2021, 27, 4463-4476.	1.8	5
130	Assessment of Ion Release for Ni-Cr Dental Alloy with Monolithic and Multilayer Coatings in Different pH Level. Surfaces and Interfaces, 2021, 22, 100904.	1.5	5
131	A versatile TiO2/ZrO2 nanocomposite coating produced on Ti-6Al-4V via plasma electrolytic oxidation process. Surfaces and Interfaces, 2022, 32, 102128.	1.5	5
132	Semiconducting behavior of the anodically passive films formed on AZ31B alloy. Journal of Magnesium and Alloys, 2014, 2, 305-308.	5.5	4
133	Modified Point Defect Model for the Electrochemical Behavior of the Passive Films Formed on Alloy C (UNS N10002) in Borax Solutions. Arabian Journal for Science and Engineering, 2015, 40, 63-67.	1.1	4
134	Corrosion Behavior of Pure Copper Surrounded by Hank's Physiological Electrolyte at 310ÂK (37°C) as a Potential Biomaterial for Contraception: An Analogy Drawn Between Micro- and Nano-grained Copper. Journal of Materials Engineering and Performance, 2017, 26, 3739-3749.	1.2	4
135	A Study on Passive and Electrochemical Response of Pure Nickel in Borate Buffer Solutions: Effect of Cold Deformation. Journal of Materials Engineering and Performance, 2018, 27, 3401-3410.	1.2	4
136	A study on the electrochemical responses of p-type bismuth telluride-based thermoelectric materials in a 0.1†M NaCl solution: Comparing a nanocomposite with dispersed MoS2 nanoparticles and a single-phase alloy. Journal of Alloys and Compounds, 2020, 815, 152371.	2.8	4
137	Corrosion Behavior of A356-10 Vol.% SiC Composites Cast by Gravity and Squeeze Casting in H ₂ SO ₄ Solutions. International Journal of Corrosion, 2014, 2014, 1-8.	0.6	3
138	Electrochemical Behavior of the Passive Films Formed on Alloy 22 (UNS N06022) in Acidic Solutions. Arabian Journal for Science and Engineering, 2015, 40, 2985-2991.	1.1	3
139	Electrochemical Properties of AZ80ÂMg Alloy in Phosphate Buffer Solutions. Arabian Journal for Science and Engineering, 2016, 41, 169-175.	1.1	3
140	Immersion time and passive potential role on the passive and electrochemical response of tantalum in 0.1 M HNO3 solution. Materials Research Express, 2018, 5, 116512.	0.8	3
141	Semiconducting properties assessment of passive oxide films forming on pure tungsten in 1.0 M H3PO4 solution. Materials Research Express, 2018, 5, 116514.	0.8	3
142	Green Corrosion Inhibitor of the Matricaria Chamomilla Oil to Protect Steel in the Acidic H2S-Containing Solution. Journal of Bio- and Tribo-Corrosion, 2021, 7, 1.	1.2	3
143	Semiconducting behavior of pure copper in alkaline solutions. Egyptian Journal of Petroleum, 2015, 24, 405-409.	1.2	2
144	Effect of Film Formation Potential on the Electrochemical Behavior of the Passive Films Formed on Zinc in 0.01ÂM NaOH. Transactions of the Indian Institute of Metals, 2015, 68, 851-857.	0.7	2

#	Article	IF	CITATIONS
145	Anodic Oxidation of Carbon Steel at High Current Densities and Investigation of Its Corrosion Behavior. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2017, 48, 1659-1666.	1.0	2
146	Electrochemical Behavior Assessment of As-Cast Mg-Y-RE-Zr Alloy in Phosphate Buffer Solutions (X) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
146	Journal of Materials Engineering and Performance, 2018, 27, 3248-3254.	1.2	2
147	Corrosion behavior of Ce-doped Ni-10Cu-11Fe-6Al (wt%) inert anode in molten CaCl2 salt. Journal of Rare Earths, 2019, 37, 218-224.	2.5	2
148	Studying the in vitro corrosion response of nanostructured TaN coatings in Hank's physiological solution. International Journal of Applied Ceramic Technology, 2021, 18, 1269-1280.	1.1	2
149	Electrochemical Behavior and Passivation of Cu–30Zn Alloy in Aqueous NaOH Solutions. Arabian Journal for Science and Engineering, 2015, 40, 2993-2999.	1.1	1
150	Shot peening effects on corrosion behavior of commercial pure titanium in body simulating solution. Materials Research Express, 2019, 6, 116556.	0.8	1
151	Effect of compound layer on the corrosion behavior of plasma nitrided AISI H13 tool steel. Materials Research Express, 2019, 6, 056412.	0.8	1
152	Surface modification of CP-Ti by calcium-phosphate via an integrated electrospinning and rapid heating and cooling (EMRHC) process: Essential in-vitro studies for bone regeneration. Surfaces and Interfaces, 2021, 27, 101480.	1.5	1
153	Facile Electrochemical Method to Improve Surface Features of Pure Copper in Dilute Basic Solutions. Journal of Materials Engineering and Performance, 2017, 26, 1634-1646.	1.2	0
154	Corrosion behavior of TiN layer fabricated by laser irradiation of Ti target in N2/liquid water environment. Ceramics International, 2022, , .	2.3	0