Takanari Togashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2183819/publications.pdf

Version: 2024-02-01

		567281	477307
54	940	15	29
papers	citations	h-index	g-index
54	54	54	1291
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Nanoparticle chemisorption printing technique for conductive silver patterning with submicron resolution. Nature Communications, 2016, 7, 11402.	12.8	104
2	Highly Efficient Electrocatalysis and Mechanistic Investigation of Intermediate $IrOx<(OH)y Nanoparticle Films for Water Oxidation. ACS Catalysis, 2016, 6, 3946-3954.$	11.2	96
3	Surfactant-assisted one-pot synthesis of superparamagnetic magnetite nanoparticle clusters with tunable cluster size and magnetic field sensitivity. Dalton Transactions, 2011, 40, 1073-1078.	3.3	93
4	Electrocatalytic water splitting with unprecedentedly low overpotentials by nickel sulfide nanowires stuffed into carbon nitride scabbards. Energy and Environmental Science, 2021, 14, 5358-5365.	30.8	84
5	Grainâ€Boundaryâ€Free Superâ€Proton Conduction of a Solutionâ€Processed Prussianâ€Blue Nanoparticle Film. Angewandte Chemie - International Edition, 2017, 56, 5531-5535.	13.8	52
6	Grainâ€Boundaryâ€Free Superâ€Proton Conduction of a Solutionâ€Processed Prussianâ€Blue Nanoparticle Film. Angewandte Chemie, 2017, 129, 5623-5627.	2.0	44
7	Direct and Selective Immobilization of Proteins by Means of an Inorganic Material-Binding Peptide: Discussion on Functionalization in the Elongation to Material-Binding Peptide. Journal of Physical Chemistry B, 2010, 114, 480-486.	2.6	35
8	Material-binding peptide applicationâ€"ZnO crystal structure control by means of a ZnO-binding peptide. Journal of Bioscience and Bioengineering, 2011, 111, 140-145.	2.2	34
9	Continuous hydrothermal synthesis of 3,4-dihydroxyhydrocinnamic acid-modified magnetite nanoparticles with stealth-functionality against immunological response. Journal of Materials Chemistry, 2012, 22, 9041.	6.7	33
10	High Affinity Anti-inorganic Material Antibody Generation by Integrating Graft and Evolution Technologies. Journal of Biological Chemistry, 2010, 285, 7784-7793.	3.4	29
11	Surfactant-Assisted Hydrothermal Synthesis of Water-Dispersible Hafnium Oxide Nanoparticles in Highly Alkaline Media. Crystal Growth and Design, 2012, 12, 5219-5226.	3.0	24
12	Concisely Synthesized FeNiWO _{<i>x</i>} Film as a Highly Efficient and Robust Catalyst for Electrochemical Water Oxidation. ACS Applied Energy Materials, 2021, 4, 1410-1420.	5.1	23
13	Solvent-free synthesis of monodisperse Cu nanoparticles by thermal decomposition of an oleylamine-coordinated Cu oxalate complex. Dalton Transactions, 2018, 47, 5342-5347.	3.3	18
14	Polymer surfactant-assisted tunable nanostructures of amorphous IrO thin films for efficient electrocatalytic water oxidation. Catalysis Today, 2017, 290, 51-58.	4.4	17
15	Hydrothermal synthesis of inorganic–organic hybrid gadolinium hydroxide nanoclusters with controlled size and morphology. Dalton Transactions, 2013, 42, 16176.	3.3	16
16	Controlled reduction of Cu2+ to Cu+ with an N,O-type chelate under hydrothermal conditions to produce Cu2O nanoparticles. Materials Letters, 2010, 64, 1049-1051.	2.6	14
17	Fabrication of Two-Dimensional Structures of Metal Oxide Nanocrystals Using Si Substrate Modified with 3,4-Dihydroxyhydrocinnamic Acid. Chemistry of Materials, 2010, 22, 1862-1869.	6.7	14
18	Molecular Nanostamp Based on One-Dimensional Porphyrin Polymers. ACS Applied Materials & Samp; Interfaces, 2013, 5, 6879-6885.	8.0	13

#	Article	IF	Citations
19	Synthesis of Water-Dispersible Silver Nanoparticles by Thermal Decomposition of Water-Soluble Silver Oxalate Precursors. Journal of Nanoscience and Nanotechnology, 2014, 14, 6022-6027.	0.9	13
20	Characterization and Mechanism of Efficient Visible-Light-Driven Water Oxidation on an in Situ N ₂ -Intercalated WO ₃ Nanorod Photoanode. ACS Sustainable Chemistry and Engineering, 2019, 7, 17896-17906.	6.7	13
21	A low-temperature sintered heterostructure solid film of coordination polymer nanoparticles: an electron-rectifier function based on partially oxidised/reduced conductor phases of Prussian blue. RSC Advances, 2015, 5, 96297-96304.	3.6	12
22	Unique coexistence of dispersion stability and nanoparticle chemisorption in alkylamine/alkylacid encapsulated silver nanocolloids. Scientific Reports, 2018, 8, 6133.	3.3	11
23	One-pot hydrothermal synthesis of an assembly of magnetite nanoneedles on a scaffold of cyclic-diphenylalanine nanorods. Journal of Nanoparticle Research, 2011, 13, 3991-3999.	1.9	10
24	Largely enhanced photocurrent via gap-mode plasmon resonance by a nanocomposite layer of silver nanoparticles and porphyrin derivatives fabricated on an electrode. Applied Physics Letters, 2012, 101, 063103.	3.3	10
25	Size-Tunable Continuous-Seed-Mediated Growth of Silver Nanoparticles in Alkylamine Mixture via the Stepwise Thermal Decomposition of Silver Oxalate. Chemistry of Materials, 2020, 32, 9363-9370.	6.7	10
26	Dualâ€Functional Surfactantâ€Templated Strategy for Synthesis of an In Situ N ₂ â€Intercalated Mesoporous WO ₃ Photoanode for Efficient Visibleâ€Lightâ€Driven Water Oxidation. Chemistry - A European Journal, 2017, 23, 6596-6604.	3.3	9
27	Electrochemical interfacing of Prussian blue nanocrystals with an ITO electrode modified with a thin film containing a Ru complex. Journal of Materials Chemistry C, 2019, 7, 12491-12501.	5.5	9
28	Self Formed Anisotropic Proton Conductive Polymer Film by Nanophase Separation. Journal of the Electrochemical Society, 2019, 166, B3218-B3222.	2.9	8
29	Reversible Aggregation and Deaggregation of Helicene-grafted Chiral Silica Nanoparticles Induced by Aromatic Solvents. Chemistry Letters, 2010, 39, 1004-1005.	1.3	7
30	Characterization of Interfacial Chargeâ€Transfer Photoexcitation of Polychromiumâ€Oxoâ€Electrodeposited TiO ₂ as an Earthâ€Abundant Photoanode for Water Oxidation Driven by Visible Light. ChemPlusChem, 2016, 81, 1116-1122.	2.8	7
31	Nanoepitaxy of Anatase-type TiO ₂ on CeO ₂ Nanocubes Self-Assembled on a Si Substrate for Fabricating Well-Aligned Nanoscale Heterogeneous Interfaces. Crystal Growth and Design, 2014, 14, 4714-4720.	3.0	6
32	Spontaneous Construction of Nanoneedles Using Ruthenium Complex-conjugated Porphyrins on Substrates. Chemistry Letters, 2014, 43, 1201-1203.	1.3	6
33	N,N-Diethyl-diaminopropane-copper(<scp>ii</scp>) oxalate self-reducible complex for the solution-based synthesis of copper nanocrystals. Dalton Transactions, 2017, 46, 12487-12493.	3.3	6
34	Supercritical Hydrothermal Synthesis. , 2013, , 949-978.		5
35	Low-temperature crystal growth of aluminium-doped zinc oxide nanoparticles in a melted viscous liquid of alkylammonium nitrates for fabrication of their transparent crystal films. CrystEngComm, 2014, 16, 10539-10546.	2.6	5
36	Supercritical Hydrothermal Synthesis of Nanoparticles. , 2018, , 683-689.		5

#	Article	IF	Citations
37	Oleic acid-enhanced dissolution of cellulose in high-temperature water. Research on Chemical Intermediates, 2011, 37, 415-419.	2.7	4
38	Self-Assembly and Reassembly Phenomena of Organic–Inorganic Hybrid Nanocrystals in Highly Ordered Nanocrystalline Multi/Monolayer. Japanese Journal of Applied Physics, 2013, 52, 110113.	1.5	4
39	Plasmon-Assisted Photocurrent Generation from Silver Nanoparticle Monolayers Combined with Porphyrins via Their Different Chain-Length Alkylcarboxylates. Journal of Nanoscience and Nanotechnology, 2014, 14, 4090-4096.	0.9	4
40	Potential Tuning of Nanoarchitectures Based on Phthalocyanine Nanopillars: Construction of Effective Photocurrent Generation Systems. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19098-19103.	8.0	4
41	Facile Templateless Fabrication of a Cobalt Oxyhydroxide Nanosheet Film with Nanoscale Porosity as an Efficient Electrocatalyst for Water Oxidation. ChemPhotoChem, 2018, 2, 332-339.	3.0	4
42	Formation of Methionine Sulfoxide of Amyloid βâ€Peptide (1â€40) by Cu(bdpe)/H2O2 System. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 2005, 35, 677-681.	0.6	3
43	Suitable Location to Control Electron Transfer and Gap-mode Plasmon Interactions: Photocurrent Generation from Silver Nanoparticle–Porphyrin Composite Layers. Chemistry Letters, 2013, 42, 669-671.	1.3	3
44	Construction of hybrid films of silver nanoparticles and polypyridine ruthenium complexes on substrates. Dalton Transactions, 2015, 44, 15244-15249.	3.3	3
45	Silver Nano- and Microplates Grew on a Specific Face of Coordination Polymer Crystals. Chemistry Letters, 2016, 45, 646-648.	1.3	3
46	Wisely Designed Phthalocyanine Derivative for Convenient Molecular Fabrication on a Substrate. Langmuir, 2018, 34, 1321-1326.	3.5	3
47	Simultaneous Synthesis and Self-assembly of Cyclic Diphenylalanine at Hydrothermal Condition. Chemistry Letters, 2006, 35, 636-637.	1.3	2
48	Supercritical Hydrothermal Synthesis of Nanoparticles for Hybrid Materials < br/> Materials through Organic Surface Modification—. Review of High Pressure Science and Technology/Koatsuryoku No Kagaku To Gijutsu, 2012, 22, 89-96.	0.0	2
49	Direct Conversion from Oleylamine-coordinated Iron Oxalate Powder to Colloidal Magnetite Nanoparticle <i>via</i> Simple Thermal Treatment. Chemistry Letters, 2018, 47, 1333-1336.	1.3	2
50	Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(ii) oxalate. Dalton Transactions, 2021, 50, 16021-16029.	3.3	2
51	Synthesis and Unique Function of a Copper(II) Compound Possessing an Imidazole Moiety as an Anchor Group. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2007, 62, 205-208.	0.7	1
52	A Catalytic Deposition Method of Silver Nanoparticles on TiO ₂ via Low-temperature Decomposition of Silver Oxalates. Chemistry Letters, 2016, 45, 1195-1197.	1.3	1
53	Supercritical Hydrothermal Synthesis of Organic Modified Nanoparticles Towards Superhybrid Materials. Journal of the Adhesion Society of Japan, 2013, 49, 191-196.	0.0	0
54	An exclusive deposition method of silver nanoparticles on TiO2 particles via low-temperature decomposition of silver-alkyldiamine complexes in aqueous media. RSC Advances, 2020, 10, 4545-4553.	3.6	0