Tariq M Rana

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2183253/publications.pdf

Version: 2024-02-01

76326 118850 8,262 63 40 62 citations h-index g-index papers 65 65 65 13475 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Virologic and Immunologic Characterization of Coronavirus Disease 2019 Recrudescence After Nirmatrelvir/Ritonavir Treatment. Clinical Infectious Diseases, 2023, 76, e530-e532.	5.8	45
2	Discovery and Mechanism of SARS-CoV-2 Main Protease Inhibitors. Journal of Medicinal Chemistry, 2022, 65, 2866-2879.	6.4	59
3	Detection of N6-methyladenosine in SARS-CoV-2 RNA by methylated RNA immunoprecipitation sequencing. STAR Protocols, 2022, 3, 101067.	1.2	1
4	Regulation of antiviral innate immunity by chemical modification of viral <scp>RNA</scp> . Wiley Interdisciplinary Reviews RNA, 2022, 13, e1720.	6.4	24
5	Glial cell diversity and methamphetamine-induced neuroinflammation in human cerebral organoids. Molecular Psychiatry, 2021, 26, 1194-1207.	7.9	68
6	Rapid 3D Bioprinting of Glioblastoma Model Mimicking Native Biophysical Heterogeneity. Small, 2021, 17, e2006050.	10.0	55
7	m ⁶ A-RNA Demethylase FTO Inhibitors Impair Self-Renewal in Glioblastoma Stem Cells. ACS Chemical Biology, 2021, 16, 324-333.	3.4	98
8	Revealing Tissue-Specific SARS-CoV-2 Infection and Host Responses using Human Stem Cell-Derived Lung and Cerebral Organoids. Stem Cell Reports, 2021, 16, 437-445.	4.8	92
9	Cellular diversity of human cerebral organoids revealed by single cell RNA-seq. Molecular Psychiatry, 2021, 26, 1043-1043.	7.9	O
10	METTL3 regulates viral m6A RNA modification and host cell innate immune responses during SARS-CoV-2 infection. Cell Reports, 2021, 35, 109091.	6.4	124
11	HIV reprograms host m6Am RNA methylome by viral Vpr protein-mediated degradation of PCIF1. Nature Communications, 2021, 12, 5543.	12.8	24
12	m ⁶ A RNA methyltransferases METTL3/14 regulate immune responses to antiâ€PDâ€1 therapy. EMBO Journal, 2020, 39, e104514.	7.8	229
13	Zika virus depletes neural stem cells and evades selective autophagy by suppressing the Fanconi anemia protein <scp>FANCC</scp> . EMBO Reports, 2020, 21, e49183.	4.5	17
14	Cholesterol 25â€Hydroxylase inhibits <scp>SARS</scp> oVâ€2 and other coronaviruses by depleting membrane cholesterol. EMBO Journal, 2020, 39, e106057.	7.8	203
15	ALKBH5 regulates anti–PD-1 therapy response by modulating lactate and suppressive immune cell accumulation in tumor microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20159-20170.	7.1	329
16	An atlas of immune cell exhaustion in HIV-infected individuals revealed by single-cell transcriptomics. Emerging Microbes and Infections, 2020, 9, 2333-2347.	6.5	48
17	Integrin $\hat{l}\pm v\hat{l}^2$ 5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Reports, 2020, 30, 969-983.e4.	6.4	63
18	Optimizing sequencing protocols for leaderboard metagenomics by combining long and short reads. Genome Biology, 2019, 20, 226.	8.8	47

#	Article	IF	CITATIONS
19	The Long Noncoding RNA < i > HEAL < / i > Regulates HIV-1 Replication through Epigenetic Regulation of the HIV-1 Promoter. MBio, 2019, 10, .	4.1	49
20	Genome-wide Integrative Analysis of Zika-Virus-Infected Neuronal Stem Cells Reveals Roles for MicroRNAs in Cell Cycle and Stemness. Cell Reports, 2019, 27, 3618-3628.e5.	6.4	50
21	HIV-1 Escape from Small-Molecule Antagonism of Vif. MBio, 2019, 10, .	4.1	8
22	The long noncoding <scp>RNA</scp> <i> <scp>ROCKI</scp> </i> regulates inflammatory gene expression. EMBO Journal, 2019, 38, .	7.8	76
23	Profiling of N6-Methyladenosine in Zika Virus RNA and Host Cellular mRNA. Methods in Molecular Biology, 2019, 1870, 209-218.	0.9	9
24	Lipoprotein lipase regulates hematopoietic stem progenitor cell maintenance through DHA supply. Nature Communications, 2018, 9, 1310.	12.8	22
25	Next-Generation Sequencing of Genome-Wide CRISPR Screens. Methods in Molecular Biology, 2018, 1712, 203-216.	0.9	36
26	Zika virus infection reprograms global transcription of host cells to allow sustained infection. Emerging Microbes and Infections, 2017, 6, 1-10.	6.5	58
27	Genome-Wide CRISPR Screen for Essential Cell Growth Mediators in Mutant KRAS Colorectal Cancers. Cancer Research, 2017, 77, 6330-6339.	0.9	99
28	miR-34 Modulates Innate Immunity and Ecdysone Signaling in Drosophila. PLoS Pathogens, 2016, 12, e1006034.	4.7	66
29	Identification of novel genes and networks governing hematopoietic stem cell development. EMBO Reports, 2016, 17, 1814-1828.	4.5	11
30	Synthesis of Eupalinilide E, a Promoter of Human Hematopoietic Stem and Progenitor Cell Expansion. Journal of the American Chemical Society, 2016, 138, 6068-6073.	13.7	31
31	Zika Virus Depletes Neural Progenitors in Human Cerebral Organoids through Activation of the Innate Immune Receptor TLR3. Cell Stem Cell, 2016, 19, 258-265.	11.1	629
32	miR-1298 Inhibits Mutant KRAS-Driven Tumor Growth by Repressing FAK and LAMB3. Cancer Research, 2016, 76, 5777-5787.	0.9	44
33	1,2,3-Triazoles as Amide Bioisosteres: Discovery of a New Class of Potent HIV-1 Vif Antagonists. Journal of Medicinal Chemistry, 2016, 59, 7677-7682.	6.4	156
34	Dynamics of the human and viral m6A RNA methylomes during HIV-1 infection of T cells. Nature Microbiology, 2016, 1, 16011.	13.3	373
35	A Herpesvirus Protein Selectively Inhibits Cellular mRNA Nuclear Export. Cell Host and Microbe, 2016, 20, 642-653.	11.0	40
36	Polycomb Group Protein Pcgf6 Acts as a Master Regulator to Maintain Embryonic Stem Cell Identity. Scientific Reports, 2016, 6, 26899.	3.3	28

#	Article	IF	Citations
37	Dynamics of Human and Viral RNA Methylation during Zika Virus Infection. Cell Host and Microbe, 2016, 20, 666-673.	11.0	318
38	P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes and Development, 2016, 30, 117-131.	5.9	105
39	Enhancing Induced Pluripotent Stem Cell Generation by MicroRNA. Methods in Molecular Biology, 2015, 1357, 71-84.	0.9	6
40	Haunting the HOXA Locus: Two Faces of IncRNA Regulation. Cell Stem Cell, 2015, 16, 449-450.	11.1	4
41	Preparation of novel curdlan nanoparticles for intracellular siRNA delivery. Carbohydrate Polymers, 2015, 117, 324-330.	10.2	61
42	Therapeutic targeting of polo-like kinase 1 using RNA-interfering nanoparticles (iNOPs) for the treatment of non-small cell lung cancer. Oncotarget, 2015, 6, 12020-12034.	1.8	51
43	MicroRNA-mediated regulation of extracellular matrix formation modulates somatic cell reprogramming. Rna, 2014, 20, 1900-1915.	3.5	23
44	Decoding the noncoding: Prospective of lncRNA-mediated innate immune regulation. RNA Biology, 2014, 11, 979-985.	3.1	40
45	An Evolutionarily Conserved Long Noncoding RNA TUNA Controls Pluripotency and Neural Lineage Commitment. Molecular Cell, 2014, 53, 1005-1019.	9.7	364
46	Kinome-wide Functional Analysis Highlights the Role of Cytoskeletal Remodeling in Somatic Cell Reprogramming. Cell Stem Cell, 2014, 14, 523-534.	11.1	62
47	The long noncoding RNA <i>THRIL</i> regulates TNFα expression through its interaction with hnRNPL. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 1002-1007.	7.1	545
48	Therapeutic targeting of microRNAs: current status and future challenges. Nature Reviews Drug Discovery, 2014, 13, 622-638.	46.4	874
49	Genome-wide Functional Analysis Reveals Factors Needed at the Transition Steps of Induced Reprogramming. Cell Reports, 2014, 8, 327-337.	6.4	63
50	Learning the molecular mechanisms of the reprogramming factors: let's start from microRNAs. Molecular BioSystems, 2013, 9, 10-17.	2.9	31
51	Staged miRNA re-regulation patterns during reprogramming. Genome Biology, 2013, 14, R149.	9.6	13
52	A kinase inhibitor screen identifies small-molecule enhancers of reprogramming and iPS cell generation. Nature Communications, 2012, 3, 1085.	12.8	88
53	SAR and Lead Optimization of an HIV-1 Vif-APOBEC3G Axis Inhibitor. ACS Medicinal Chemistry Letters, 2012, 3, 465-469.	2.8	26
54	miRâ€TRAP: A Benchtop Chemical Biology Strategy to Identify microRNA Targets. Angewandte Chemie - International Edition, 2012, 51, 5880-5883.	13.8	48

Tariq M Rana

#	Article	IF	CITATIONS
55	Molecular Mechanisms of RNA-Triggered Gene Silencing Machineries. Accounts of Chemical Research, 2012, 45, 1122-1131.	15.6	76
56	Small RNA-mediated regulation of iPS cell generation. EMBO Journal, 2011, 30, 823-834.	7.8	281
57	Discovery of Nonsteroidal Anti-Inflammatory Drug and Anticancer Drug Enhancing Reprogramming and Induced Pluripotent Stem Cell Generation. Stem Cells, 2011, 29, 1528-1536.	3.2	54
58	microRNAs modulate iPS cell generation. Rna, 2011, 17, 1451-1460.	3.5	114
59	Small RNAs: Regulators and guardians of the genome. Journal of Cellular Physiology, 2007, 213, 412-419.	4.1	159
60	Illuminating the silence: understanding the structure and function of small RNAs. Nature Reviews Molecular Cell Biology, 2007, 8, 23-36.	37.0	931
61	Translation Repression in Human Cells by MicroRNA-Induced Gene Silencing Requires RCK/p54. PLoS Biology, 2006, 4, e210.	5.6	445
62	TAR RNA loop: A scaffold for the assembly of a regulatory switch in HIV replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 7928-7933.	7.1	81
63	Tat-associated Kinase (P-TEFb): a Component of Transcription Preinitiation and Elongation Complexes. Journal of Biological Chemistry, 1999, 274, 7399-7404.	3.4	85