Hong-Yu Hu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182995/publications.pdf

Version: 2024-02-01

430874 454955 1,051 31 18 30 h-index citations g-index papers 34 34 34 1674 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Structural Transformation of the Amyloidogenic Core Region of TDP-43 Protein Initiates Its Aggregation and Cytoplasmic Inclusion. Journal of Biological Chemistry, 2013, 288, 19614-19624.	3.4	124
2	Aggregation of polyglutamine-expanded ataxin-3 sequesters its specific interacting partners into inclusions: Implication in a loss-of-function pathology. Scientific Reports, 2014, 4, 6410.	3.3	110
3	The N-terminal dimerization is required for TDP-43 splicing activity. Scientific Reports, 2017, 7, 6196.	3.3	78
4	Sequestration of cellular interacting partners by protein aggregates: implication in a lossâ€ofâ€function pathology. FEBS Journal, 2016, 283, 3705-3717.	4.7	70
5	Two mutations G335D and Q343R within the amyloidogenic core region of TDP-43 influence its aggregation and inclusion formation. Scientific Reports, 2016, 6, 23928.	3.3	64
6	Highly efficient expression and purification system of small-size protein domains in Escherichia coli for biochemical characterization. Protein Expression and Purification, 2006, 47, 599-606.	1.3	63
7	Aggregation of the 35â€kDa fragment of TDPâ€43 causes formation of cytoplasmic inclusions and alteration of RNA processing. FASEB Journal, 2011, 25, 2344-2353.	0.5	62
8	Solid-State NMR Reveals the Structural Transformation of the TDP-43 Amyloidogenic Region upon Fibrillation. Journal of the American Chemical Society, 2020, 142, 3412-3421.	13.7	51
9	Length of the active-site crossover loop defines the substrate specificity of ubiquitin C-terminal hydrolases for ubiquitin chains. Biochemical Journal, 2012, 441, 143-149.	3.7	48
10	Domain Analysis Reveals That a Deubiquitinating Enzyme USP13 Performs Non-Activating Catalysis for Lys63-Linked Polyubiquitin. PLoS ONE, 2011, 6, e29362.	2.5	41
11	TDPâ€35 sequesters TDPâ€43 into cytoplasmic inclusions through binding with RNA. FEBS Letters, 2015, 589, 1920-1928.	2.8	40
12	Autoinhibitory Structure of the WW Domain of HYPB/SETD2 Regulates Its Interaction with the Proline-Rich Region of Huntingtin. Structure, 2014, 22, 378-386.	3.3	39
13	HSP90 recognizes the N-terminus of huntingtin involved in regulation of huntingtin aggregation by USP19. Scientific Reports, 2017, 7, 14797.	3.3	35
14	Cytoplasmic Ubiquitin-Specific Protease 19 (USP19) Modulates Aggregation of Polyglutamine-Expanded Ataxin-3 and Huntingtin through the HSP90 Chaperone. PLoS ONE, 2016, 11, e0147515.	2.5	34
15	Aggregation of Polyglutamine-expanded Ataxin 7 Protein Specifically Sequesters Ubiquitin-specific Protease 22 and Deteriorates Its Deubiquitinating Function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex. Journal of Biological Chemistry, 2015, 290, 21996-22004.	3.4	30
16	The C-terminal Helices of Heat Shock Protein 70 Are Essential for J-domain Binding and ATPase Activation. Journal of Biological Chemistry, 2012, 287, 6044-6052.	3.4	26
17	PolyQâ€expanded huntingtin and ataxinâ€3 sequester ubiquitin adaptors hHR23B and UBQLN2 into aggregates <i>via</i> conjugated ubiquitin. FASEB Journal, 2018, 32, 2923-2933.	0.5	24
18	Differential ubiquitin binding of the UBA domains from human c bl and Cblâ€b: NMR structural and biochemical insights. Protein Science, 2008, 17, 1805-1814.	7.6	23

#	Article	IF	CITATIONS
19	Oâ€GlcNAcylation of TDPâ€43 suppresses proteinopathies and promotes TDPâ€43's mRNA splicing activity. EMBO Reports, 2021, 22, e51649.	4.5	15
20	Structural and dynamic studies reveal that the Ala-rich region of ataxin-7 initiates \hat{l}_{\pm} -helix formation of the polyQ tract but suppresses its aggregation. Scientific Reports, 2019, 9, 7481.	3.3	13
21	PolyQ-expanded proteins impair cellular proteostasis of ataxin-3 through sequestering the co-chaperone HSJ1 into aggregates. Scientific Reports, 2021, 11, 7815.	3.3	11
22	The N-terminal ubiquitin-binding region of ubiquitin-specific protease 28 modulates its deubiquitination function: NMR structural and mechanistic insights. Biochemical Journal, 2015, 471, 155-165.	3.7	8
23	RNA-assisted sequestration of RNA-binding proteins by cytoplasmic inclusions of the C-terminal 35-kDa fragment of TDP-43. Journal of Cell Science, 2022, 135, .	2.0	8
24	Structural and Functional Investigations of the N-Terminal Ubiquitin Binding Region of Usp25. Biophysical Journal, 2017, 112, 2099-2108.	0.5	6
25	Domain interactions reveal auto-inhibition of the deubiquitinating enzyme USP19 and its activation by HSP90 in the modulation of huntingtin aggregation. Biochemical Journal, 2020, 477, 4295-4312.	3.7	5
26	Study of Protein Amyloid-Like Aggregates by Solid-State Circular Dichroism Spectroscopy. Current Protein and Peptide Science, 2016, 18, 100-103.	1.4	5
27	A Ubiquitin Shuttle DC-UbP/UBTD2 Reconciles Protein Ubiquitination and Deubiquitination via Linking UbE1 and USP5 Enzymes. PLoS ONE, 2014, 9, e107509.	2.5	4
28	Structural Transformation of the Peptide Fragments from the Reactive Center Loops of Serpins: Circular Dichroic Studies. Chinese Journal of Chemistry, 2001, 19, 954-959.	4.9	2
29	Editorial: Structural Aspects of Protein Aggregation. Protein and Peptide Letters, 2017, 24, 280-280.	0.9	2
30	Novel Secondary Structure of Calcitonin in Solid State as Revealed by Circular Dichroism Spectroscopy. Chinese Journal of Chemistry, 2002, 20, 697-698.	4.9	0
31	The concentration of hydrogen peroxide generated during aggregation of αâ€synuclein <i>in vitro</i> is lower than 5 nmol/L. Chinese Journal of Chemistry, 2004, 22, 1440-1443.	4.9	0