
Stefano Ciurli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182970/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Biogeochemical processes and geotechnical applications: progress, opportunities and challenges. Geotechnique, 2013, 63, 287-301.	2.2	591
2	A new proposal for urease mechanism based on the crystal structures of the native and inhibited enzyme from Bacillus pasteurii: why urea hydrolysis costs two nickels. Structure, 1999, 7, 205-216.	1.6	462
3	Nonredox Nickel Enzymes. Chemical Reviews, 2014, 114, 4206-4228.	23.0	235
4	Chemistry of Ni ²⁺ in Urease: Sensing, Trafficking, and Catalysis. Accounts of Chemical Research, 2011, 44, 520-530.	7.6	224
5	The complex of Bacillus pasteurii urease with acetohydroxamate anion from X-ray data at 1.55 Ã resolution. Journal of Biological Inorganic Chemistry, 2000, 5, 110-118.	1.1	169
6	Nickel impact on human health: An intrinsic disorder perspective. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2016, 1864, 1714-1731.	1.1	151
7	Structural properties of the nickel ions in urease: novel insights into the catalytic and inhibition mechanisms. Coordination Chemistry Reviews, 1999, 190-192, 331-355.	9.5	147
8	Molecular Details of Urease Inhibition by Boric Acid:Â Insights into the Catalytic Mechanism. Journal of the American Chemical Society, 2004, 126, 3714-3715.	6.6	142
9	Structure-based rationalization of urease inhibition by phosphate: novel insights into the enzyme mechanism. Journal of Biological Inorganic Chemistry, 2001, 6, 778-790.	1.1	132
10	The complex of Bacillus pasteurii urease with Î ² -mercaptoethanol from X-ray data at 1.65-Ã resolution. Journal of Biological Inorganic Chemistry, 1998, 3, 268-273.	1.1	119
11	Structure-based computational study of the catalytic and inhibition mechanisms of urease. Journal of Biological Inorganic Chemistry, 2001, 6, 300-314.	1.1	110
12	High-Field NMR Studies of Oxidized Blue Copper Proteins:Â The Case of Spinach Plastocyanin. Journal of the American Chemical Society, 1999, 121, 2037-2046.	6.6	105
13	Subsite-Specific Structures and Reactions in Native and Synthetic [4Fe-4S] Cubane-Type Clusters. Progress in Inorganic Chemistry, 0, , 1-74.	3.0	101
14	ldentification of the iron ions of high potential iron protein from Chromatium vinosum within the protein frame through two-dimensional NMR experiments. Journal of the American Chemical Society, 1992, 114, 3332-3340.	6.6	97
15	Urease from the soil bacterium Bacillus pasteurii: Immobilization on Ca-polygalacturonate. Soil Biology and Biochemistry, 1996, 28, 811-817.	4.2	92
16	The structure-based reaction mechanism of urease, a nickel dependent enzyme: tale of a long debate. Journal of Biological Inorganic Chemistry, 2020, 25, 829-845.	1.1	92
17	The electronic structure of FeS centers in proteins and models a contribution to the understanding of their electron transfer properties. Structure and Bonding, 1995, , 1-53.	1.0	91
18	UreG, a Chaperone in the Urease Assembly Process, Is an Intrinsically Unstructured GTPase That Specifically Binds Zn2+. Journal of Biological Chemistry, 2005, 280, 4684-4695.	1.6	91

#	Article	IF	CITATIONS
19	Subsite-differentiated analogs of native iron sulfide [4Fe-4S]2+ clusters: preparation of clusters with five- and six-coordinate subsites and modulation of redox potentials and charge distributions. Journal of the American Chemical Society, 1990, 112, 2654-2664.	6.6	86
20	The electronic structure of iron-sulfur [Fe4S4]3+ clusters in proteins. An investigation of the oxidized high-potential iron-sulfur protein II from Ectothiorhodospira vacuolata. Biochemistry, 1993, 32, 9387-9397.	1.2	86
21	Structural Characterization of Binding of Cu(II) to Tau Protein. Biochemistry, 2008, 47, 10841-10851.	1.2	85
22	<i>Helicobacter pylori</i> UreE, a urease accessory protein: specific Ni2+- and Zn2+-binding properties and interaction with its cognate UreG. Biochemical Journal, 2009, 422, 91-100.	1.7	83
23	Structural Basis for Ni2+Transport and Assembly of the Urease Active Site by the Metallochaperone UreE from Bacillus pasteurii. Journal of Biological Chemistry, 2001, 276, 49365-49370.	1.6	74
24	Jack bean (Canavalia ensiformis) urease. Probing acid–base groups of the active site by pH variation. Plant Physiology and Biochemistry, 2005, 43, 651-658.	2.8	74
25	Zn ²⁺ â€linked dimerization of UreG from <i>Helicobacter pylori</i> , a chaperone involved in nickel trafficking and urease activation. Proteins: Structure, Function and Bioinformatics, 2009, 74, 222-239.	1.5	73
26	Synthetic nickel-containing heterometal cubane-type clusters with NiFe3Q4 cores (Q = sulfur,) Tj ETQq0 0 0 rgB	Г /Qverloct	R 10 Tf 50 46
27	Nickel and Human Health. Metal Ions in Life Sciences, 2013, 13, 321-357.	2.8	71
28	The iron-sulfur cluster in the oxidized high-potential iron protein from Ectothiorhodospira halophila. Journal of the American Chemical Society, 1993, 115, 3431-3440.	6.6	69
29	Kinetics of photo-induced electron transfer from high-potential iron-sulfur protein to the photosynthetic reaction center of the purple phototroph Rhodoferax fermentans Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 6998-7002.	3.3	68
30	The RNA Hydrolysis and the Cytokinin Binding Activities of PR-10 Proteins Are Differently Performed by Two Isoforms of the Pru p 1 Peach Major Allergen and Are Possibly Functionally Related. Plant Physiology, 2009, 150, 1235-1247.	2.3	66
31	The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickelâ€Dependent Enzyme. Angewandte Chemie - International Edition, 2019, 58, 7415-7419.	7.2	66
32	The First Solution Structure of a Paramagnetic Copper(II) Protein:Â The Case of Oxidized Plastocyanin from the CyanobacteriumSynechocystisPCC6803. Journal of the American Chemical Society, 2001, 123, 2405-2413.	6.6	65
33	Immobilization of jack bean urease on hydroxyapatite: urease immobilization in alkaline soils. Soil Biology and Biochemistry, 1998, 30, 1485-1490.	4.2	63
34	High-Affinity Ni2+ Binding Selectively Promotes Binding of Helicobacter pylori NikR to Its Target Urease Promoter. Journal of Molecular Biology, 2008, 383, 1129-1143.	2.0	63
35	The high potential iron-sulfur protein (HiPIP) fromRhodoferax fermentansis competent in photosynthetic electron transfer. FEBS Letters, 1995, 357, 70-74.	1.3	62
36	Inactivation of urease by 1,4-benzoquinone: chemistry at the protein surface. Dalton Transactions, 2016, 45, 5455-5459.	1.6	61

3

#	Article	IF	CITATIONS
37	Crystal Structure of OxidizedBacillus pasteuriiCytochromec553at 0.97-à Resolutionâ€. Biochemistry, 2000, 39, 13115-13126.	1.2	59
38	Fluoride inhibition of Sporosarcina pasteurii urease: structure and thermodynamics. Journal of Biological Inorganic Chemistry, 2014, 19, 1243-1261.	1.1	58
39	Synthetic nickel-iron NiFe3Q4 cubane-type clusters (S = 3/2) by reductive rearrangement of linear [Fe3Q4(SEt)4]3- (Q = sulfur, selenium). Journal of the American Chemical Society, 1990, 112, 8169-8171.	6.6	57
40	Inactivation of urease by catechol: Kinetics and structure. Journal of Inorganic Biochemistry, 2017, 166, 182-189.	1.5	57
41	On the structure of the nickel/iron/sulfur center of the carbon monoxide dehydrogenase from Rhodospirillum rubrum: an x-ray absorption spectroscopy study Proceedings of the National Academy of Sciences of the United States of America, 1992, 89, 4427-4431.	3.3	56
42	Biochemical Studies onMycobacterium tuberculosisUreG and Comparative Modeling Reveal Structural and Functional Conservation among the Bacterial UreG Familyâ€. Biochemistry, 2007, 46, 3171-3182.	1.2	56
43	Bacillus pasteurii urease: A heteropolymeric enzyme with a binuclear nickel active site. Soil Biology and Biochemistry, 1996, 28, 819-821.	4.2	55
44	The structure of urease inactivated by Ag(<scp>i</scp>): a new paradigm for enzyme inhibition by heavy metals. Dalton Transactions, 2018, 47, 8240-8247.	1.6	54
45	Insertion of vanadium-iron-sulfur, [VFe3S4]2+, and molybdenum-iron-sulfur, [MoFe3S4]3+, cores into a semirigid trithiolate cavitand ligand: regiospecific reactions at a vanadium site similar to that in nitrogenase. Inorganic Chemistry, 1989, 28, 1685-1690.	1.9	53
46	Urease Inhibition in the Presence of <i>N</i> -(<i>n</i> Butyl)thiophosphoric Triamide, a Suicide Substrate: Structure and Kinetics. Biochemistry, 2017, 56, 5391-5404.	1.2	53
47	Crystallographic and X-ray absorption spectroscopic characterization of <i>Helicobacter pylori</i> UreE bound to Ni2+ and Zn2+ reveals a role for the disordered C-terminal arm in metal trafficking. Biochemical Journal, 2012, 441, 1017-1035.	1.7	52
48	Backbone Dynamics of Plastocyanin in Both Oxidation States. Journal of Biological Chemistry, 2001, 276, 47217-47226.	1.6	50
49	The Nickel Site of Bacillus pasteurii UreE, a Urease Metallo-Chaperone, As Revealed by Metal-Binding Studies and X-ray Absorption Spectroscopy. Biochemistry, 2006, 45, 6495-6509.	1.2	49
50	The crystal structure of Sporosarcina pasteurii urease in a complex with citrate provides new hints for inhibitor design. Journal of Biological Inorganic Chemistry, 2013, 18, 391-399.	1.1	49
51	A New Class of Organozirconium(IV) Compounds: Alkyl Derivatives of Tetramethyltetraazadibenzo[14]annulenatozirconium(IV). Angewandte Chemie International Edition in English, 1987, 26, 70-72.	4.4	48
52	Intrinsically Disordered Structure of Bacillus pasteurii UreG As Revealed by Steady-State and Time-Resolved Fluorescence Spectroscopy. Biochemistry, 2006, 45, 8918-8930.	1.2	47
53	The Ni2+ binding properties of Helicobacter pylori NikR. Chemical Communications, 2007, , 3649.	2.2	47
54	Coordination sphere versus protein environment as determinants of electronic and functional properties of iron-sulfur proteins. Structure and Bonding, 1998, , 127-160.	1.0	44

#	Article	IF	CITATIONS
55	Preparation and reactivity studies of synthetic microperoxidases containing b-type heme. Journal of Biological Inorganic Chemistry, 2004, 9, 385-395.	1.1	44
56	Insights in the (un)structural organization of Bacillus pasteurii UreG, an intrinsically disordered GTPase enzyme. Molecular BioSystems, 2012, 8, 220-228.	2.9	44
57	Molecular landscape of the interaction between the urease accessory proteins UreE and UreG. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2014, 1844, 1662-1674.	1.1	44
58	Nickel trafficking: insights into the fold and function of UreE, a urease metallochaperone. Journal of Inorganic Biochemistry, 2004, 98, 803-813.	1.5	43
59	Kinetic and structural studies reveal a unique binding mode of sulfite to the nickel center in urease. Journal of Inorganic Biochemistry, 2016, 154, 42-49.	1.5	42
60	Novel Dual-Action Plant Fertilizer and Urease Inhibitor: Urea·Catechol Cocrystal. Characterization and Environmental Reactivity. ACS Sustainable Chemistry and Engineering, 2019, 7, 2852-2859.	3.2	42
61	Smart urea ionic co-crystals with enhanced urease inhibition activity for improved nitrogen cycle management. Chemical Communications, 2018, 54, 7637-7640.	2.2	41
62	Nickel binding properties of Helicobacter pylori UreF, an accessory protein in the nickel-based activation of urease. Journal of Biological Inorganic Chemistry, 2014, 19, 319-334.	1.1	40
63	Nickel-responsive transcriptional regulators. Metallomics, 2015, 7, 1305-1318.	1.0	40
64	Molecular characterization of Bacillus pasteurii UreE, a metal-binding chaperone for the assembly of the urease active site. Journal of Biological Inorganic Chemistry, 2002, 7, 623-631.	1.1	39
65	FeON-FeOFF: the Helicobacter pylori Fur regulator commutates iron-responsive transcription by discriminative readout of opposed DNA grooves. Nucleic Acids Research, 2014, 42, 3138-3151.	6.5	38
66	Promiscuous Nickel Import in Human Pathogens: Structure, Thermodynamics, and Evolution of Extracytoplasmic Nickel-Binding Proteins. Structure, 2014, 22, 1421-1432.	1.6	38
67	Probing Structural and Electronic Properties of the Oxidized [Fe4S4]3+Cluster ofEctothiorhodospirahalophilaiso-II High-Potential Ironâ°Sulfur Protein by ENDOR Spectroscopy. Journal of the American Chemical Society, 1999, 121, 1925-1935.	6.6	36
68	A model-based proposal for the role of UreF as a GTPase-activating protein in the urease active site biosynthesis. Proteins: Structure, Function and Bioinformatics, 2007, 68, 749-761.	1.5	36
69	The relationship between folding and activity in UreG, an intrinsically disordered enzyme. Scientific Reports, 2017, 7, 5977.	1.6	34
70	Conformational Fluctuations of UreG, an Intrinsically Disordered Enzyme. Biochemistry, 2013, 52, 2949-2954.	1.2	33
71	Insights into Urease Inhibition by <i>N</i> -(<i>n</i> Butyl) Phosphoric Triamide through an Integrated Structural and Kinetic Approach. Journal of Agricultural and Food Chemistry, 2019, 67, 2127-2138.	2.4	33
72	Computational Study of the DNA-Binding Protein Helicobacter pylori NikR: The Role of Ni2+ 2 Francesco Musiani and Branimir BertoÅja contributed equally to the simulations presented here Journal of Chemical Theory and Computation, 2010, 6, 3503-3515.	2.3	32

#	Article	IF	CITATIONS
73	Biochemical and structural studies on native and recombinant Glycine max UreG: a detailed characterization of a plant urease accessory protein. Plant Molecular Biology, 2012, 78, 461-475.	2.0	32
74	Unraveling the Helicobacter pylori UreC zinc binding site using X-ray absorption spectroscopy (XAS) and structural modeling. Journal of Biological Inorganic Chemistry, 2012, 17, 353-361.	1.1	32
75	Multifunctional Urea Cocrystal with Combined Ureolysis and Nitrification Inhibiting Capabilities for Enhanced Nitrogen Management. ACS Sustainable Chemistry and Engineering, 2019, 7, 13369-13378.	3.2	32
76	X-ray Absorption Spectroscopy Study of Native and Phenylphosphorodiamidate-Inhibited Bacillus pasteurii Urease. FEBS Journal, 1996, 239, 61-66.	0.2	31
77	Zinc Inhibition of Bacterial Cytochrome <i>bc</i> ₁ Reveals the Role of Cytochrome <i>b</i> E295 in Proton Release at the Q _o Site. Biochemistry, 2011, 50, 4263-4272.	1.2	30
78	Pliable natural biocide: Jaburetox is an intrinsically disordered insecticidal and fungicidal polypeptide derived from jack bean urease. FEBS Journal, 2015, 282, 1043-1064.	2.2	30
79	Inhibition Mechanism of Urease by Au(III) Compounds Unveiled by X-ray Diffraction Analysis. ACS Medicinal Chemistry Letters, 2019, 10, 564-570.	1.3	30
80	Isolation, Characterization, and Functional Role of the High-Potential Iron-Sulfur Protein (HiPIP) from Rhodoferax fermentans. Archives of Biochemistry and Biophysics, 1995, 322, 313-318.	1.4	29
81	Interaction of Selenoprotein W with 14-3-3 Proteins: A Computational Approach. Journal of Proteome Research, 2011, 10, 968-976.	1.8	29
82	Stability range of heterometal cubane-type clusters MFe3S4: assembly of double-cubane clusters with the rhenium-iron-sulfur [[ReFe3S4]] core. Inorganic Chemistry, 1989, 28, 2696-2698.	1.9	28
83	Modulation of Bacillus pasteurii cytochrome c 553 reduction potential by structural and solution parameters. Journal of Biological Inorganic Chemistry, 1998, 3, 371-382.	1.1	28
84	Holo-Ni2+Helicobacter pylori NikR contains four square-planar nickel-binding sites at physiological pH. Dalton Transactions, 2011, 40, 7831.	1.6	28
85	Targeting Helicobacter pylori urease activity and maturation: In-cell high-throughput approach for drug discovery. Biochimica Et Biophysica Acta - General Subjects, 2018, 1862, 2245-2253.	1.1	28
86	The model structure of the copper-dependent ammonia monooxygenase. Journal of Biological Inorganic Chemistry, 2020, 25, 995-1007.	1.1	27
87	Heterometal cubane-type clusters: a rhenium-iron-sulfur (ReFe3S4) single-cubane cluster by cleavage of an iron-bridged double cubane and the site-voided cubane [Fe3S4] as a cluster ligand. Inorganic Chemistry, 1991, 30, 743-750.	1.9	26
88	Electronic structure of the [Fe4Se4]3+ clusters in C. vinosum HiPIP and Ectothiorhodospiza halophila HiPIP II through NMR and EPR studies. Journal of the American Chemical Society, 1993, 115, 12020-12028.	6.6	26
89	Protein Tunnels: The Case of Urease Accessory Proteins. Journal of Chemical Theory and Computation, 2017, 13, 2322-2331.	2.3	25
90	Structural Basis for the Molecular Properties of Cytochromec6â€. Biochemistry, 2002, 41, 14689-14699.	1.2	24

#	Article	IF	CITATIONS
91	Rationalization of the reduction potentials within the series of the high potential iron-sulfur proteins. Inorganica Chimica Acta, 1995, 240, 251-256.	1.2	23
92	NMR Solution Structure, Backbone Mobility, and Homology Modeling ofc-Type Cytochromes from Gram-Positive Bacteria. ChemBioChem, 2002, 3, 299-310.	1.3	23
93	High potential iron–sulfur proteins and their role as soluble electron carriers in bacterial photosynthesis: tale of a discovery. Photosynthesis Research, 2005, 85, 115-131.	1.6	23
94	Urease Inhibitory Potential and Soil Ecotoxicity of Novel "Polyphenols–Deep Eutectic Solvents― Formulations. ACS Sustainable Chemistry and Engineering, 2019, 7, 15558-15567.	3.2	23
95	? and ? Organometallic derivatives of titanium(III) and vanadium(III) bonded to a dibenzotetramethyletetra-aza[14]annulene ligand. Journal of the Chemical Society Chemical Communications, 1986, , 1401.	2.0	22
96	The conformational response to Zn(II) and Ni(II) binding of Sporosarcina pasteurii UreC, an intrinsically disordered GTPase. Journal of Biological Inorganic Chemistry, 2014, 19, 1341-1354.	1.1	22
97	Five-co-ordinate magnesium complexes: synthesis and structure of quadridentate Schiff-base derivatives. Journal of the Chemical Society Dalton Transactions, 1988, , 2341.	1.1	21
98	Crystallization and preliminary high-resolution X-ray diffraction analysis of native and β-mercaptoethanol-inhibited urease from Bacillus pasteurii. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 409-412.	2.5	21
99	Metal Ion-Mediated DNA-Protein Interactions. Metal Ions in Life Sciences, 2012, 10, 135-170.	2.8	21
100	Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: a calorimetric and crystallographic study. Journal of Biological Inorganic Chemistry, 2013, 18, 1005-1017.	1.1	21
101	The Impact of pH on Catalytically Critical Protein Conformational Changes: The Case of the Urease, a Nickel Enzyme. Chemistry - A European Journal, 2019, 25, 12145-12158.	1.7	21
102	NMR of Polymetallic Systems in Proteins. Biological Magnetic Resonance, 1993, , 357-420.	0.4	21
103	Structure of the Intermolecular Complex between Plastocyanin and Cytochrome f from Spinach*. Journal of Biological Chemistry, 2005, 280, 18833-18841.	1.6	20
104	Isothermal Titration Calorimetry to Characterize Enzymatic Reactions. Methods in Enzymology, 2016, 567, 215-236.	0.4	20
105	Structure and dynamics of Helicobacter pylori nickel-chaperone HypA: an integrated approach using NMR spectroscopy, functional assays and computational tools. Journal of Biological Inorganic Chemistry, 2018, 23, 1309-1330.	1.1	20
106	New Insights into the Mechanism of Purple Acid Phosphatase through1H NMR Spectroscopy of the Recombinant Human Enzyme. Journal of the American Chemical Society, 2002, 124, 13974-13975.	6.6	19
107	Engineered biosealant strains producing inorganic and organic biopolymers. Journal of Biotechnology, 2012, 161, 181-189.	1.9	19
108	Intrinsic disorder and metal binding in UreG proteins from Archae hyperthermophiles: GTPase enzymes involved in the activation of Ni(II) dependent urease. Journal of Biological Inorganic Chemistry, 2015, 20, 739-755.	1.1	19

#	Article	IF	CITATIONS
109	The CO dehydrogenase accessory protein CooT is a novel nickel-binding protein. Metallomics, 2017, 9, 575-583.	1.0	19
110	Reduced Cobalt-meso-Tetraphenylporphyrin Complexes: Synthesis and Structure of[Na(thf)3]2[Co(TPP)]. Angewandte Chemie International Edition in English, 1986, 25, 553-554.	4.4	18
111	On the role of high-potential iron–sulfur proteins and cytochromes in the respiratory chain of two facultative phototrophs. Biochimica Et Biophysica Acta - Bioenergetics, 1999, 1410, 51-60.	0.5	18
112	On the interaction of Helicobacter pylori NikR, aÂNi(II)-responsive transcription factor, with the urease operator: in solution and in silico studies. Journal of Biological Inorganic Chemistry, 2015, 20, 1021-1037.	1.1	18
113	Clusters containing the iron-rhenium-sulfur [ReFe3(.mu.3-S)4] core: an expansion of the heterometal cubane-type cluster series MFe3S4. Inorganic Chemistry, 1990, 29, 3493-3501.	1.9	17
114	Title is missing!. Photosynthesis Research, 1997, 53, 13-21.	1.6	17
115	Kinetic properties and stability of potato acid phosphatase immobilized on Ca-polygalacturonate. Biology and Fertility of Soils, 1998, 27, 97-103.	2.3	17
116	Low-Temperature EPR and Mössbauer Spectroscopy of Two Cytochromes with His–Met Axial Coordination Exhibiting HALS Signals. ChemPhysChem, 2006, 7, 1258-1267.	1.0	17
117	Structure of the UreD–UreF–UreC–UreE complex in Helicobacter pylori: a model study. Journal of Biological Inorganic Chemistry, 2013, 18, 571-577.	1.1	17
118	Clutamate Ligation in the Ni(II)- and Co(II)-Responsive <i>Escherichia coli</i> Transcriptional Regulator, RcnR. Inorganic Chemistry, 2017, 56, 6459-6476.	1.9	16
119	The carbon monoxide dehydrogenase accessory protein CooJ is a histidine-rich multidomain dimer containing an unexpected Ni(II)-binding site. Journal of Biological Chemistry, 2019, 294, 7601-7614.	1.6	16
120	Ion pair complexes form the reduction of metal(II)-dibenzotetramethyltetra-aza[14]annulene complexes. Journal of the Chemical Society Chemical Communications, 1987, , 281.	2.0	14
121	1H NMR of High-Potential Iron-Sulfur Protein from the Purple Non-Sulfur Bacterium Rhodoferax fermentans. FEBS Journal, 1996, 236, 405-411.	0.2	14
122	An Italian contribution to structural genomics: Understanding metalloproteins. Coordination Chemistry Reviews, 2006, 250, 1419-1450.	9.5	14
123	Model Structures of Helicobacter pylori UreD(H) Domains: A Putative Molecular Recognition Platform. Journal of Chemical Information and Modeling, 2011, 51, 1513-1520.	2.5	14
124	Surface plasmon resonance and isothermal titration calorimetry to monitor the Ni(II)-dependent binding of Helicobacter pylori NikR to DNA. Analytical and Bioanalytical Chemistry, 2016, 408, 7971-7980.	1.9	14
125	Nickel as a virulence factor in the Class I bacterial carcinogen, Helicobacter pylori. Seminars in Cancer Biology, 2021, 76, 143-155.	4.3	14
126	Targeting the Protein Tunnels of the Urease Accessory Complex: A Theoretical Investigation. Molecules, 2020, 25, 2911.	1.7	13

#	Article	IF	CITATIONS
127	cis- and trans-Dichloro chelate complexes of niobium(IV): synthesis and structure of trans-dichloro[NN′-ethylenebis(acetylacetonylideneiminato)-(2–)]niobium(IV) and cis-dichloro{7,16-dihydro-6,8,15,17-tetramethyldibenzo-[b,i][1,4,8,11]tetra-azacyclotetradecinato(2–)}niobium(1/2). Journal of the Chemical Society Dalton Transactions, 1988, , 1361-1365.	ı(1 V)–ac	etonitrile
128	Oxidized and Reduced [Fe2Q2] (Q = S, Se) Cores of Spinach Ferredoxin: a Comparative Study Using 1H NMR Spectroscopy. Inorganic Chemistry, 1995, 34, 417-420.	1.9	12
129	Structure ofRhodoferax fermentanshigh-potential iron–sulfur protein solved by MAD. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 1582-1588.	2.5	12
130	Inhibition of Urease, a Niâ€Enzyme: The Reactivity of a Key Thiol With Mono―and Diâ€Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angewandte Chemie - International Edition, 2021, 60, 6029-6035.	7.2	12
131	Cytochrome c-553 from the Alkalophilic Bacterium Bacillus pasteurii Has the Primary Structure Characteristics of a Lipoprotein. Biochemical and Biophysical Research Communications, 1999, 264, 380-387.	1.0	11
132	Urease: Recent Insights on the Role of Nickel. , 2007, , 241-277.		11
133	Development of a multisite model for Ni(II) ion in solution from thermodynamic and kinetic data. Journal of Computational Chemistry, 2017, 38, 1834-1843.	1.5	11
134	Electron Transfer from HiPIP to the Photooxidized Tetraheme Cytochrome Subunit of Allochromatium vinosum Reaction Center:  New Insights from Site-Directed Mutagenesis and Computational Studies. Biochemistry, 2004, 43, 437-445.	1.2	10
135	On the role of a specific insert in acetate permeases (ActP) for tellurite uptake in bacteria: Functional and structural studies. Journal of Inorganic Biochemistry, 2016, 163, 103-109.	1.5	10
136	Structural analysis of the interaction between Jaburetox, an intrinsically disordered protein, and membrane models. Colloids and Surfaces B: Biointerfaces, 2017, 159, 849-860.	2.5	10
137	Kinetic and structural analysis of the inactivation of urease by mixed-ligand phosphine halide Ag(I) complexes. Journal of Inorganic Biochemistry, 2021, 218, 111375.	1.5	10
138	Facilitating Nitrification Inhibition through Green, Mechanochemical Synthesis of a Novel Nitrapyrin Complex. Crystal Growth and Design, 2021, 21, 5792-5799.	1.4	10
139	Medicinal Au(<scp>i</scp>) compounds targeting urease as prospective antimicrobial agents: unveiling the structural basis for enzyme inhibition. Dalton Transactions, 2021, 50, 14444-14452.	1.6	10
140	An Evaluation of Maleicâ€Itaconic Copolymers as Urease Inhibitors. Soil Science Society of America Journal, 2018, 82, 994-1003.	1.2	9
141	A Solventâ€Exposed Cysteine Forms a Peculiar Ni II â€Binding Site in the Metallochaperone CooT from Rhodospirillum rubrum. Chemistry - A European Journal, 2019, 25, 15351-15360.	1.7	9
142	Nickel and GTP Modulate Helicobacter pylori UreG Structural Flexibility. Biomolecules, 2020, 10, 1062.	1.8	9
143	Crystals of cytochrome c-553 fromBacillus pasteurii show diffraction to 0.97 å resolution. Proteins: Structure, Function and Bioinformatics, 1997, 28, 580-585.	1.5	8
144	High resolution crystal structure of Rubrivivax gelatinosus cytochrome c′. Journal of Inorganic Biochemistry, 2008, 102, 1322-1328.	1.5	8

#	Article	IF	CITATIONS
145	Soyuretox, an Intrinsically Disordered Polypeptide Derived from Soybean (Glycine Max) Ubiquitous Urease with Potential Use as a Biopesticide. International Journal of Molecular Sciences, 2019, 20, 5401.	1.8	8
146	The Primary Structure of Rhodoferax fermentans High-Potential Iron-Sulfur Protein, an Electron Donor to the Photosynthetic Reaction Center. FEBS Journal, 1997, 244, 371-377.	0.2	7
147	The Asn 38â^'Cys 84 H-Bond in Plastocyanin. Journal of Physical Chemistry B, 2004, 108, 7495-7499.	1.2	7
148	Hot Biological Catalysis: Isothermal Titration Calorimetry to Characterize Enzymatic Reactions. Journal of Visualized Experiments, 2014, , .	0.2	7
149	The Structure of the Elusive Urease–Urea Complex Unveils the Mechanism of a Paradigmatic Nickelâ€Dependent Enzyme. Angewandte Chemie, 2019, 131, 7493-7497.	1.6	7
150	Probing the transport of Ni(II) ions through the internal tunnels of the Helicobacter pylori UreDFG multimeric protein complex. Journal of Inorganic Biochemistry, 2021, 223, 111554.	1.5	6
151	Intrinsic disorder in the nickel-dependent urease network. Progress in Molecular Biology and Translational Science, 2020, 174, 307-330.	0.9	6
152	Nickel import and export in the human pathogen <i>Helicobacter pylori</i> , perspectives from molecular modelling. Metallomics, 2021, 13, .	1.0	6
153	Cyclic voltammetry and spectroelectrochemistry of cytochrome c8 from Rubrivivax gelatinosus. Implications in photosynthetic electron transfer. Inorganica Chimica Acta, 1997, 263, 379-384.	1.2	5
154	Bioinorganic Chemistry of Nickel. Inorganics, 2019, 7, 131.	1.2	5
155	Denaturant-Induced Conformational Transitions in Intrinsically Disordered Proteins. , 2012, 896, 197-213.		4
156	Structure, dynamics, and function of SrnR, a transcription factor for nickel-dependent gene expression. Metallomics, 2021, 13, .	1.0	4
157	Evolution of Macromolecular Docking Techniques: The Case Study of Nickel and Iron Metabolism in Pathogenic Bacteria. Molecules, 2015, 20, 14265-14292.	1.7	3
158	Inhibition of Urease, a Niâ€Enzyme: The Reactivity of a Key Thiol With Mono―and Diâ€Substituted Catechols Elucidated by Kinetic, Structural, and Theoretical Studies. Angewandte Chemie, 2021, 133, 6094-6100.	1.6	3
159	Intrinsic Fluorescence of Intrinsically Disordered Proteins. Methods in Molecular Biology, 2012, 895, 435-440.	0.4	1
160	Revisiting the CooJ family, a potential chaperone for nickel delivery to [NiFe]‑carbon monoxide dehydrogenase. Journal of Inorganic Biochemistry, 2021, 225, 111588.	1.5	1
161	Urease. , 2013, , 2287-2292.		1
162	On the Role of Soluble Redox Carriers Alternative to Cytochrome c2 As Donors to Tetraheme-Type Reaction Centers and Cytochrome Oxidases. , 1999, , 293-302.		1

#	Article	IF	CITATIONS
163	Thiocarbamoyl Disulfides as Inhibitors of Urease and Ammonia Monooxygenase: Crystal Engineering for Novel Materials. Crystal Growth and Design, 0, , .	1.4	1
164	Crystallization and preliminary X-ray diffraction analysis of cytochromec′ fromRubrivivax gelatinosusat 1.3â€Ã resolution. Acta Crystallographica Section D: Biological Crystallography, 1998, 54, 284-287.	2.5	0
165	Crystals of cytochrome c-553 from Bacillus pasteurii show diffraction to 0.97 A resolution. Proteins: Structure, Function and Bioinformatics, 1997, 28, 580-5.	1.5	0