List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182744/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Effect of dietary boron on mineral, estrogen, and testosterone metabolism in postmenopausal women ¹ . FASEB Journal, 1987, 1, 394-397.	0.5	309
2	Magnesium, inflammation, and obesity in chronic disease. Nutrition Reviews, 2010, 68, 333-340.	5.8	216
3	Nickel Deficiency Diminishes Sperm Quantity and Movement in Rats. Biological Trace Element Research, 2003, 93, 141-154.	3.5	209
4	Update on human health effects of boron. Journal of Trace Elements in Medicine and Biology, 2014, 28, 383-387.	3.0	201
5	Nutritional requirements for boron, silicon, vanadium, nickel, and arsenic: current knowledge and speculation. FASEB Journal, 1991, 5, 2661-2667.	0.5	189
6	Is boron nutritionally relevant?. Nutrition Reviews, 2008, 66, 183-191.	5.8	178
7	Magnesium deficiency and increased inflammation: current perspectives. Journal of Inflammation Research, 2018, Volume 11, 25-34.	3.5	159
8	Perspective: The Case for an Evidence-Based Reference Interval for Serum Magnesium: The Time Has Come. Advances in Nutrition, 2016, 7, 977-993.	6.4	126
9	Boron Supplementation of a Semipurified Diet for Weanling Pigs Improves Feed Efficiency and Bone Strength Characteristics and Alters Plasma Lipid Metabolites. Journal of Nutrition, 2000, 130, 2575-2581.	2.9	122
10	Growing Evidence for Human Health Benefits of Boron. Journal of Evidence-Based Complementary & Alternative Medicine, 2011, 16, 169-180.	1.5	98
11	Ultratrace elements in nutrition: Current knowledge and speculation. Journal of Trace Elements in Experimental Medicine, 1998, 11, 251-274.	0.8	93
12	Update on the possible nutritional importance of silicon. Journal of Trace Elements in Medicine and Biology, 2014, 28, 379-382.	3.0	93
13	Dietary Magnesium Deficiency Induces Heart Rhythm Changes, Impairs Glucose Tolerance, and Decreases Serum Cholesterol in Post Menopausal Women. Journal of the American College of Nutrition, 2007, 26, 121-132.	1.8	92
14	Nickel Deficiency in Rats. Journal of Nutrition, 1975, 105, 1620-1630.	2.9	90
15	Importance of making dietary recommendations for elements designated as nutritionally beneficial, pharmacologically beneficial, or conditioinally essential. Journal of Trace Elements in Experimental Medicine, 2000, 13, 113-129.	0.8	84
16	Dietary fat composition modifies the effect of boron on bone characteristics and plasma lipids in rats. BioFactors, 2004, 20, 161-171.	5.4	75
17	A histomorphometric study of alveolar bone modelling and remodelling in mice fed a boron-deficient diet. Archives of Oral Biology, 2008, 53, 677-682.	1.8	73
18	Interactions among nickel, copper, and iron in rats. Biological Trace Element Research, 1982, 4, 125-143.	3.5	72

#	Article	IF	CITATIONS
19	Evidence for the nutritional essentiality of boron. Journal of Trace Elements in Experimental Medicine, 1996, 9, 215-229.	0.8	69
20	Histomorphometric Study of Alveolar Bone Healing in Rats Fed a Boronâ€Đeficient Diet. Anatomical Record, 2008, 291, 441-447.	1.4	66
21	Boron and fish oil have different beneficial effects on strength and trabecular microarchitecture of bone. Journal of Trace Elements in Medicine and Biology, 2009, 23, 195-203.	3.0	65
22	Micronutrients in Parenteral Nutrition: Boron, Silicon, and Fluoride. Gastroenterology, 2009, 137, S55-S60.	1.3	65
23	History of Zinc in Agriculture. Advances in Nutrition, 2012, 3, 783-789.	6.4	63
24	The Interaction Between Dietary Fructose and Magnesium Adversely Affects Macromineral Homeostasis in Men. Journal of the American College of Nutrition, 2000, 19, 31-37.	1.8	62
25	Effects of germanium and silicon on bone mineralization. Biological Trace Element Research, 1994, 42, 151-164.	3.5	60
26	The justification for providing dietary guidance for the nutritional intake of boron. Biological Trace Element Research, 1998, 66, 319-330.	3.5	59
27	Dietary silicon affects bone turnover differently in ovariectomized and sham-operated growing rats. Journal of Trace Elements in Experimental Medicine, 2004, 17, 137-149.	0.8	59
28	Magnesium supplementation improves indicators of low magnesium status and inflammatory stress in adults older than 51 years with poor quality sleep. Magnesium Research, 2010, 23, 158-68.	0.5	57
29	Boron supplementation of peri-menopausal women affects boron metabolism and indices associated with macromineral metabolism, hormonal status and immune function. Journal of Trace Elements in Experimental Medicine, 1999, 12, 251-261.	0.8	56
30	How Should Dietary Guidance Be Given for Mineral Elements with Beneficial Actions or Suspected of Being Essential?. Journal of Nutrition, 1996, 126, 2377S-2385S.	2.9	54
31	Boron enhances strength and alters mineral composition of bone in rabbits fed a high energy diet. Journal of Trace Elements in Medicine and Biology, 2013, 27, 148-153.	3.0	50
32	Reported zinc, but not copper, intakes influence whole-body bone density, mineral content and T score responses to zinc and copper supplementation in healthy postmenopausal women. British Journal of Nutrition, 2011, 106, 1872-1879.	2.3	48
33	Magnesium and methionine deprivation affect the response of rats to boron deprivation. Biological Trace Element Research, 1988, 17, 91-107.	3.5	46
34	Effects of magnesium depletion on inflammation in chronic disease. Current Opinion in Clinical Nutrition and Metabolic Care, 2014, 17, 525-530.	2.5	40
35	Dietary Magnesium and Chronic Disease. Advances in Chronic Kidney Disease, 2018, 25, 230-235.	1.4	40
36	Moderate magnesium deprivation results in calcium retention and altered potassium and phosphorus excretion by postmenopausal women. Magnesium Research, 2007, 20, 19-31.	0.5	39

#	Article	IF	CITATIONS
37	Boron deprivation alters rat behaviour and brain mineral composition differently when fish oil instead of safflower oil is the diet fat source*. Nutritional Neuroscience, 2006, 9, 105-112.	3.1	34
38	Interpreting magnesium status to enhance clinical care. Current Opinion in Clinical Nutrition and Metabolic Care, 2017, 20, 504-511.	2.5	33
39	Boron. Advances in Nutrition, 2020, 11, 461-462.	6.4	33
40	The Importance of Diet Composition in Ultratrace Element Research. Journal of Nutrition, 1985, 115, 1239-1247.	2.9	31
41	Evolutionary events culminating in specific minerals becoming essential for life. European Journal of Nutrition, 2000, 39, 62-66.	3.9	29
42	Should bioactive trace elements not recognized as essential, but with beneficial health effects, have intake recommendations. Journal of Trace Elements in Medicine and Biology, 2014, 28, 406-408.	3.0	25
43	Data from Controlled Metabolic Ward Studies Provide Guidance for the Determination of Status Indicators and Dietary Requirements for Magnesium. Biological Trace Element Research, 2017, 177, 43-52.	3.5	25
44	Dietary vitamin B12, sulfur amino acids, and odd-chain fatty acids affect the response of rats to nickel deprivation. Biological Trace Element Research, 1993, 37, 1-15.	3.5	24
45	The Problematic Use of Dietary Reference Intakes to Assess Magnesium Status and Clinical Importance. Biological Trace Element Research, 2019, 188, 52-59.	3.5	24
46	The Association Between Some Macro and Trace Elements in Saliva and Periodontal Status. Biological Trace Element Research, 2020, 197, 35-42.	3.5	23
47	Guidance for the determination of status indicators and dietary requirements for magnesium. Magnesium Research, 2016, 29, 154-160.	0.5	22
48	High dietary aluminum affects the response of rats to silicon deprivation. Biological Trace Element Research, 1994, 41, 295-304.	3.5	19
49	Dietary boron does not affect tooth strength, micro-hardness, and density, but affects tooth mineral composition and alveolar bone mineral density in rabbits fed a high-energy diet. Journal of Trace Elements in Medicine and Biology, 2015, 29, 208-215.	3.0	16
50	Boron and silicon: Effects on growth, plasma lipids, urinary cyclic amp and bone and brain mineral composition of male rats. Environmental Toxicology and Chemistry, 1994, 13, 941-947.	4.3	14
51	Effect of dietary nickel deprivation on vision, olfaction, and taste in rats. Journal of Trace Elements in Medicine and Biology, 2014, 28, 436-440.	3.0	14
52	A novel silicon complex is as effective as sodium metasilicate in enhancing the collagen-induced inflammatory response of silicon-deprived rats. Journal of Trace Elements in Medicine and Biology, 2008, 22, 39-49.	3.0	13
53	Histomorphometric and Microchemical Characterization of Maturing Dental Enamel in Rats Fed a Boron-Deficient Diet. Biological Trace Element Research, 2010, 135, 242-252.	3.5	13
54	90th Anniversary Commentary: The AIN-93 Purified Diets for Laboratory Rodents—The Development of a Landmark Article in The Journal of Nutrition and Its Impact on Health and Disease Research Using Rodent Models. Journal of Nutrition, 2018, 148, 1667-1670.	2.9	13

#	Article	IF	CITATIONS
55	The Nutritional Essentiality and Physiological Metabolism of Vanadium in Higher Animals. ACS Symposium Series, 1998, , 297-307.	0.5	12
56	Soy protein is beneficial but high-fat diet and voluntary running are detrimental to bone structure in mice. Nutrition Research, 2015, 35, 523-531.	2.9	12
57	The alteration of magnesium, calcium and phosphorus metabolism by dietary magnesium deprivation in postmenopausal women is not affected by dietary boron deprivation. Magnesium Research, 2004, 17, 197-210.	0.5	12
58	Some magnesium status indicators and oxidative metabolism responses to low-dietary magnesium are affected by dietary copper in postmenopausal women. Nutrition, 2003, 19, 617-626.	2.4	11
59	Marginal Zinc Deficiency Increases Magnesium Retention and Impairs Calcium Utilization in Rats. Biological Trace Element Research, 2009, 128, 220-231.	3.5	10
60	Nickel. Advances in Nutrition, 2021, 12, 281-282.	6.4	10
61	Interactions among vanadium, iron, and cystine in rats growth, blood parameters, and organ Wt/body Wt ratios. Biological Trace Element Research, 1984, 6, 118-132.	3.5	9
62	Voluntary running of defined distances reduces body adiposity and its associated inflammation in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition and Metabolism, 2017, 42, 1179-1184.	1.9	9
63	Effects in rats of iron on lead deprivation. Biological Trace Element Research, 1988, 16, 155-163.	3.5	7
64	High dietary fructose compared with corn starch does not heighten changes in copper absorption, retention, or status indicators in men fed low dietary copper. Journal of Trace Elements in Experimental Medicine, 2003, 16, 27-38.	0.8	7
65	A Mild Magnesium Deprivation Affects Calcium Excretion But Not Bone Strength and Shape, Including Changes Induced by Nickel Deprivation, in the Rat. Biological Trace Element Research, 2006, 110, 133-150.	3.5	7
66	Boron as Boric Acid Induces mRNA Expression of the Differentiation Factor Tuftelin in Pre-Osteoblastic MC3T3-E1 Cells. Biological Trace Element Research, 2021, 199, 1534-1543.	3.5	7
67	Monocyte chemotactic protein-1 deficiency attenuates and high-fat diet exacerbates bone loss in mice with Lewis lung carcinoma. Oncotarget, 2017, 8, 23303-23311.	1.8	7
68	Silicon Deprivation Does Not Significantly Modify the Acute White Blood Cell Response but Does Modify Tissue Mineral Distribution Response to an Endotoxin Challenge. Biological Trace Element Research, 2010, 135, 45-55.	3.5	6
69	Dietary fatty acid composition alters magnesium metabolism, distribution, andÂmarginal deficiency response inÂrats*. Magnesium Research, 2009, 22, 280-288.	0.5	5
70	Arsenic possibly influences carcinogenesis by affecting arginine and zinc metabolism. Biological Trace Element Research, 1983, 5, 389-397.	3.5	4
71	Dietary Selenium Supplementation Does Not Attenuate Mammary Tumorigenesis-Mediated Bone Loss in Male MMTV-PyMT Mice. Biological Trace Element Research, 2020, 194, 221-227.	3.5	2
72	High-fat Diet Enhances and Plasminogen Activator Inhibitor-1 Deficiency Attenuates Bone Loss in Mice with Lewis Lung Carcinoma. Anticancer Research, 2015, 35, 3839-47.	1.1	2

#	Article	IF	CITATIONS
73	Editorial. Biological Trace Element Research, 2015, 163, 1-1.	3.5	1
74	Editorial. Biological Trace Element Research, 2019, 188, 1-1.	3.5	1
75	Voluntary running of defined distances alters bone microstructure in C57BL/6 mice fed a high-fat diet. Applied Physiology, Nutrition and Metabolism, 2021, 46, 1337-1344.	1.9	1
76	A histomorphometric study of alveolar bone healing in rats fed a boronâ€deficient diet. FASEB Journal, 2006, 20, A24.	0.5	1
77	Dietary boron and fish oil have desirable effects on vertebral microarchitecture and strength. FASEB Journal, 2006, 20, A561.	0.5	1
78	A histomorphometric study of alveolar bone modeling and remodeling in mice fed a boronâ€deficient diet. FASEB Journal, 2006, 20, A195.	0.5	0
79	Dietary boron, fish oil, and their interaction affect rat behavior and brain mineral composition. FASEB Journal, 2006, 20, A176.	0.5	0
80	Boron deprivation increases plasma homocysteine, a factor negatively associated with bone composition and strength. FASEB Journal, 2007, 21, A125.	0.5	0
81	A combined marginal deficiency of copper and zinc does not exacerbate oxidant stress associated with copper or zinc deficiency. FASEB Journal, 2008, 22, 1103.1.	0.5	0
82	Plasma Câ€reactive protein (CRP), an indicator of inflammation, is decreased but plasma lipids are increased, especially with magnesium (Mg) deprivation, in rats made obese by high dietary butter oil. FASEB Journal, 2011, 25, 109.8.	0.5	0
83	Nail Mineral Composition Changes Do Not Reflect Bone Mineral Changes Caused by Boron Supplementation. Biological Trace Element Research, 2022, , 1.	3.5	0

84 Ultratrace elements. , 2022, , .