
Xiaopeng Wen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182691/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Changes in the quality of fruits of four sweet cherry cultivars grown under rain-shelter cultivation during storage at room temperature. Journal of Food Measurement and Characterization, 2022, 16, 2571-2581.	3.2	4
2	Crossâ ^'Talk between Transcriptome Analysis and Physiological Characterization Identifies the Genes in Response to the Low Phosphorus Stress in Malus mandshurica. International Journal of Molecular Sciences, 2022, 23, 4896.	4.1	1
3	Identification of VOCs in essential oils extracted using ultrasound- and microwave-assisted methods from sweet cherry flower. Scientific Reports, 2021, 11, 1167.	3.3	9
4	Cross-talk between transcriptome, phytohormone and HD-ZIP gene family analysis illuminates the molecular mechanism underlying fruitlet abscission in sweet cherry (Prunus avium L). BMC Plant Biology, 2021, 21, 173.	3.6	11
5	Genetic diversity and population structure of masson pine (Pinus massoniana Lamb.) superior clones in South China as revealed by EST-SSR markers. Genetic Resources and Crop Evolution, 2021, 68, 1987-2002.	1.6	8
6	Physiological and Proteomic Responses of Pitaya to PEG-Induced Drought Stress. Agriculture (Switzerland), 2021, 11, 632.	3.1	11
7	Effects of different rain shelter coverings on volatile organic compounds in mature fruit and postharvest quality of sweet cherry. CYTA - Journal of Food, 2021, 19, 465-475.	1.9	0
8	The Effects of Rain-shelter Cultivation on the Photosynthetic Characteristics and Chlorophyll Fluorescence of Sweet Cherry (Prunus aviumÂL.). Erwerbs-Obstbau, 2021, 63, 359.	1.3	2
9	Genome-Wide Identification of ARF Gene Family Suggests a Functional Expression Pattern during Fruitlet Abscission in Prunus avium L International Journal of Molecular Sciences, 2021, 22, 11968.	4.1	10
10	Transcriptome-wide identification and expression profiling of Pinus massoniana MYB transcription factors responding to phosphorus deficiency. Journal of Forestry Research, 2020, 31, 909-919.	3.6	15
11	Trace macroelement content and speciation analysis in leaves of sweet cherry trees by elemental analysis and X-ray photoelectron spectroscopy. Spectroscopy Letters, 2020, 53, 572-579.	1.0	2
12	Comparative Transcriptome Analysis Combining SMRT- and Illumina-Based RNA-Seq Identifies Potential Candidate Genes Involved in Betalain Biosynthesis in Pitaya Fruit. International Journal of Molecular Sciences, 2020, 21, 3288.	4.1	23
13	Identification and functional study of oleoresin terpenoid biosynthesis-related genes in masson pine (Pinus massoniana L.) based on transcriptome analysis. Tree Genetics and Genomes, 2020, 16, 1.	1.6	13
14	Comparative transcriptome analysis reveals the molecular regulation underlying the adaptive mechanism of cherry (Cerasus pseudocerasus Lindl.) to shelter covering. BMC Plant Biology, 2020, 20, 27.	3.6	19
15	Over-Expression of Masson Pine PmPT1 Gene in Transgenic Tobacco Confers Tolerance Enhancement to Pi Deficiency by Ameliorating P Level and the Antioxidants. Plant Molecular Biology Reporter, 2020, 38, 238-249.	1.8	1
16	Optimizing the supercritical carbon dioxide extraction of sweet cherry (<i>Prunus avium</i> L.) leaves and UPLC-MS/MS analysis. Analytical Methods, 2020, 12, 3004-3013.	2.7	13
17	Pitaya: a potential plant resource of citramalic acid. CYTA - Journal of Food, 2020, 18, 249-256.	1.9	8
18	Genetic diversity, linkage disequilibrium, and population structure analysis of the tea plant (Camellia) Tj ETQq0 0	0 rgBT /O 3.6	verlock 10 Tr 65

2

genotyping-by-sequencing. BMC Plant Biology, 2019, 19, 328.

XIAOPENG WEN

#	Article	IF	CITATIONS
19	Metabolic Profiling of Pitaya (Hylocereus polyrhizus) during Fruit Development and Maturation. Molecules, 2019, 24, 1114.	3.8	56
20	Protocols for miRNA Target Prediction in Plants. Methods in Molecular Biology, 2019, 1970, 65-73.	0.9	3
21	Diff isomiRs: Large-scale detection of differential isomiRs for understanding non-coding regulated stress omics in plants. Scientific Reports, 2019, 9, 1406.	3.3	9
22	Transcriptional activation of long terminal repeat retrotransposon sequences in the genome of pitaya under abiotic stress. Plant Physiology and Biochemistry, 2019, 135, 460-468.	5.8	21
23	Method for the Large-Scale Identification of phasiRNAs in Brachypodium distachyon. Methods in Molecular Biology, 2018, 1667, 187-194.	0.9	5
24	Plant IsomiR Atlas: Large Scale Detection, Profiling, and Target Repertoire of IsomiRs in Plants. Frontiers in Plant Science, 2018, 9, 1881.	3.6	7
25	Proteomic analyses provide new insights into the responses of <i>Pinus massoniana</i> seedlings to phosphorus deficiency. Proteomics, 2016, 16, 504-515.	2.2	22
26	The Temporal Transcriptomic Response of Pinus massoniana Seedlings to Phosphorus Deficiency. PLoS ONE, 2014, 9, e105068.	2.5	32
27	LTR-retrotransposon activation, IRAP marker development and its potential in genetic diversity assessment of masson pine (Pinus massoniana). Tree Genetics and Genomes, 2014, 10, 213-222.	1.6	27
28	Isolation, identification, and characterization of genomic LTR retrotransposon sequences from masson pine (Pinus massoniana). Tree Genetics and Genomes, 2013, 9, 1237-1246.	1.6	9
29	Identification of differentially expressed genes preferably related to drought response in pigeon pea (Cajanus cajan) inoculated by arbuscular mycorrhizae fungi (AMF). Acta Physiologiae Plantarum, 2012, 34, 1711-1721.	2.1	18
30	Cloning of two classes of PR genes and the development of SNAP markers for powdery mildew resistance loci in chestnut rose (Rosa roxburghii Tratt). Molecular Breeding, 2007, 19, 179-191.	2.1	16