Andrew Abbott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182445/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Deep Eutectic Solvents (DESs) and Their Applications. Chemical Reviews, 2014, 114, 11060-11082.	47.7	4,488
2	Novel solvent properties of choline chloride/urea mixturesElectronic supplementary information (ESI) available: spectroscopic data. See http://www.rsc.org/suppdata/cc/b2/b210714g/. Chemical Communications, 2003, , 70-71.	4.1	3,741
3	Deep Eutectic Solvents Formed between Choline Chloride and Carboxylic Acids:Â Versatile Alternatives to Ionic Liquids. Journal of the American Chemical Society, 2004, 126, 9142-9147.	13.7	3,121
4	Recycling lithium-ion batteries from electric vehicles. Nature, 2019, 575, 75-86.	27.8	1,699
5	Preparation of novel, moisture-stable, Lewis-acidic ionic liquids containing quaternary ammonium salts with functional side chains. Chemical Communications, 2001, , 2010-2011.	4.1	764
6	Application of ionic liquids to the electrodeposition of metals. Physical Chemistry Chemical Physics, 2006, 8, 4265.	2.8	711
7	Glycerol eutectics as sustainable solvent systems. Green Chemistry, 2011, 13, 82-90.	9.0	666
8	On the concept of ionicity in ionic liquids. Physical Chemistry Chemical Physics, 2009, 11, 4962.	2.8	645
9	Solubility of Metal Oxides in Deep Eutectic Solvents Based on Choline Chloride. Journal of Chemical & Engineering Data, 2006, 51, 1280-1282.	1.9	543
10	Eutectic-Based Ionic Liquids with Metal-Containing Anions and Cations. Chemistry - A European Journal, 2007, 13, 6495-6501.	3.3	531
11	Application of Hole Theory to Define Ionic Liquids by their Transport Propertiesâ€. Journal of Physical Chemistry B, 2007, 111, 4910-4913.	2.6	417
12	Design of Improved Deep Eutectic Solvents Using Hole Theory. ChemPhysChem, 2006, 7, 803-806.	2.1	406
13	Electrodeposition of zinc–tin alloys from deep eutectic solvents based on choline chloride. Journal of Electroanalytical Chemistry, 2007, 599, 288-294.	3.8	398
14	Molecular motion and ion diffusion in choline chloride based deep eutectic solvents studied by 1H pulsed field gradient NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13, 21383.	2.8	397
15	Extraction of glycerol from biodiesel into a eutectic based ionic liquid. Green Chemistry, 2007, 9, 868.	9.0	375
16	Selective Extraction of Metals from Mixed Oxide Matrixes Using Choline-Based Ionic Liquids. Inorganic Chemistry, 2005, 44, 6497-6499.	4.0	314
17	lonic Liquids Based upon Metal Halide/Substituted Quaternary Ammonium Salt Mixtures. Inorganic Chemistry, 2004, 43, 3447-3452.	4.0	311
18	Processing of metals and metal oxides using ionic liquids. Green Chemistry, 2011, 13, 471.	9.0	309

#	Article	IF	CITATIONS
19	Ionic Liquid Analogues Formed from Hydrated Metal Salts. Chemistry - A European Journal, 2004, 10, 3769-3774.	3.3	307
20	Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Physical Chemistry Chemical Physics, 2009, 11, 4269.	2.8	302
21	Application of Hole Theory to the Viscosity of Ionic and Molecular Liquids. ChemPhysChem, 2004, 5, 1242-1246.	2.1	248
22	Electroplating Using Ionic Liquids. Annual Review of Materials Research, 2013, 43, 335-358.	9.3	228
23	In-situ activation of self-supported 3D hierarchically porous Ni3S2 films grown on nanoporous copper as excellent pH-universal electrocatalysts for hydrogen evolution reaction. Nano Energy, 2017, 36, 85-94.	16.0	211
24	O-Acetylation of cellulose and monosaccharides using a zinc based ionic liquid. Green Chemistry, 2005, 7, 705.	9.0	210
25	Molecular and ionic diffusion in aqueous – deep eutectic solvent mixtures: probing inter-molecular interactions using PFG NMR. Physical Chemistry Chemical Physics, 2015, 17, 15297-15304.	2.8	204
26	Quaternary ammonium zinc- or tin-containing ionic liquids: water insensitive, recyclable catalysts for Diels–Alder reactions. Green Chemistry, 2002, 4, 24-26.	9.0	196
27	Do all ionic liquids need organic cations? Characterisation of [AlCl2·nAmide]+ AlCl4â^' and comparison with imidazolium based systems. Chemical Communications, 2011, 47, 3523.	4.1	190
28	The importance of design in lithium ion battery recycling – a critical review. Green Chemistry, 2020, 22, 7585-7603.	9.0	190
29	The effect of additives on zinc electrodeposition from deep eutectic solvents. Electrochimica Acta, 2011, 56, 5272-5279.	5.2	186
30	Voltammetric and impedance studies of the electropolishing of type 316 stainless steel in a choline chloride based ionic liquid. Electrochimica Acta, 2006, 51, 4420-4425.	5.2	185
31	EXAFS Study into the Speciation of Metal Salts Dissolved in Ionic Liquids and Deep Eutectic Solvents. Inorganic Chemistry, 2014, 53, 6280-6288.	4.0	170
32	Electropolishing of stainless steels in a choline chloride based ionic liquid: an electrochemical study with surface characterisation using SEM and atomic force microscopy. Physical Chemistry Chemical Physics, 2006, 8, 4214.	2.8	169
33	A Comparative Study of Nickel Electrodeposition Using Deep Eutectic Solvents and Aqueous Solutions. Electrochimica Acta, 2015, 176, 718-726.	5.2	164
34	Cationic functionalisation of cellulose using a choline based ionic liquid analogue. Green Chemistry, 2006, 8, 784.	9.0	158
35	Electrodeposition of nickel using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008, 86, 234-240.	1.3	158
36	The application of deep eutectic solvent ionic liquids for environmentally-friendly dissolution and recovery of precious metals. Minerals Engineering, 2016, 87, 18-24.	4.3	154

#	Article	IF	CITATIONS
37	Electrofinishing of metals using eutectic based ionic liquids. Transactions of the Institute of Metal Finishing, 2008, 86, 196-204.	1.3	152
38	The electrodeposition of silver composites using deep eutectic solvents. Physical Chemistry Chemical Physics, 2012, 14, 2443.	2.8	151
39	Selective Cross-Coupling of 2-Naphthol and 2-Naphthylamine Derivatives. A Facile Synthesis of 2,2',3-Trisubstituted and 2,2',3,3'-Tetrasubstituted 1,1'-Binaphthyls. Journal of Organic Chemistry, 1994, 59, 2156-2163.	3.2	146
40	Model for the Conductivity of Ionic Liquids Based on an Infinite Dilution of Holes. ChemPhysChem, 2005, 6, 2502-2505.	2.1	146
41	Ionometallurgy: designer redox properties for metal processing. Chemical Communications, 2011, 47, 10031.	4.1	138
42	Evaluating water miscible deep eutectic solvents (DESs) and ionic liquids as potential lubricants. Green Chemistry, 2014, 16, 4156-4161.	9.0	138
43	Double layer effects on metal nucleation in deep eutectic solvents. Physical Chemistry Chemical Physics, 2011, 13, 10224.	2.8	134
44	Aluminium electrodeposition under ambient conditions. Physical Chemistry Chemical Physics, 2014, 16, 14675-14681.	2.8	125
45	Speciation, physical and electrolytic properties of eutectic mixtures based on CrCl3·6H2O and urea. Physical Chemistry Chemical Physics, 2014, 16, 9047.	2.8	123
46	The regiospecific Fischer indole reaction in choline chloride·2ZnCl2with product isolation by direct sublimation from the ionic liquid. Chemical Communications, 2004, , 158-159.	4.1	115
47	Efficient continuous synthesis of high purity deep eutectic solvents by twin screw extrusion. Chemical Communications, 2016, 52, 4215-4218.	4.1	111
48	Anodic dissolution of metals in ionic liquids. Progress in Natural Science: Materials International, 2015, 25, 595-602.	4.4	105
49	Electropolishing of stainless steel in an ionic liquid. Transactions of the Institute of Metal Finishing, 2005, 83, 51-53.	1.3	103
50	Electroless deposition of metallic silver from a choline chloride-based ionic liquid: a study using acoustic impedance spectroscopy, SEM and atomic force microscopy. Physical Chemistry Chemical Physics, 2007, 9, 3735.	2.8	103
51	Processing of Electric Arc Furnace Dust using Deep Eutectic Solvents. Australian Journal of Chemistry, 2009, 62, 341.	0.9	102
52	Double layer, diluent and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids. Physical Chemistry Chemical Physics, 2010, 12, 1862-1872.	2.8	100
53	Sustained electroless deposition of metallic silver from a choline chloride-based ionic liquid. Surface and Coatings Technology, 2008, 202, 2033-2039.	4.8	93
54	The effect of pH and hydrogen bond donor on the dissolution of metal oxides in deep eutectic solvents. Green Chemistry, 2020, 22, 5476-5486.	9.0	92

#	Article	IF	CITATIONS
55	Liquid pharmaceuticals formulation by eutectic formation. Fluid Phase Equilibria, 2017, 448, 2-8.	2.5	91
56	Electrolytic deposition of Zn coatings from ionic liquids based on choline chloride. Transactions of the Institute of Metal Finishing, 2009, 87, 201-207.	1.3	89
57	Title is missing!. Journal of Applied Electrochemistry, 2001, 31, 1345-1350.	2.9	87
58	Conductivity of tetra-alkylammonium salts in polyaromatic solvents. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1453.	1.7	85
59	Influence of additives on the electrodeposition of zinc from a deep eutectic solvent. Electrochimica Acta, 2019, 304, 118-130.	5.2	83
60	Non-classical diffusion in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 10147.	2.8	78
61	BrÃ,nsted acidity in deep eutectic solvents and ionic liquids. Faraday Discussions, 2018, 206, 365-377.	3.2	75
62	Metal complexation in ionic liquids. Annual Reports on the Progress of Chemistry Section A, 2008, 104, 21.	0.8	72
63	Lubrication of Steel/Steel Contacts by Choline Chloride Ionic Liquids. Tribology Letters, 2010, 37, 103-110.	2.6	71
64	Electrocatalytic recovery of elements from complex mixtures using deep eutectic solvents. Green Chemistry, 2015, 17, 2172-2179.	9.0	70
65	Bright metal coatings from sustainable electrolytes: the effect of molecular additives on electrodeposition of nickel from a deep eutectic solvent. Physical Chemistry Chemical Physics, 2017, 19, 3219-3231.	2.8	69
66	Nanostructure of the deep eutectic solvent/platinum electrode interface as a function of potential and water content. Nanoscale Horizons, 2019, 4, 158-168.	8.0	67
67	Electrodeposition of Chromium Black from Ionic Liquids. Transactions of the Institute of Metal Finishing, 2004, 82, 14-17.	1.3	65
68	Salt modified starch: sustainable, recyclable plastics. Green Chemistry, 2012, 14, 1302.	9.0	63
69	Solvation of carbohydrates in five choline chloride-based deep eutectic solvents and the implication for cellulose solubility. Green Chemistry, 2019, 21, 4673-4682.	9.0	63
70	To shred or not to shred: A comparative techno-economic assessment of lithium ion battery hydrometallurgical recycling retaining value and improving circularity in LIB supply chains. Resources, Conservation and Recycling, 2021, 175, 105741.	10.8	59
71	Direct extraction of copper from copper sulfide minerals using deep eutectic solvents. Green Chemistry, 2019, 21, 6502-6512.	9.0	57
72	Deep eutectic solvents: alternative reaction media for organic oxidation reactions. Reaction Chemistry and Engineering, 2021, 6, 582-598.	3.7	57

#	Article	IF	CITATIONS
73	Electrochemical investigations in supercritical carbon dioxide. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 3895.	1.7	55
74	Thermodynamics of phase transfer for polar molecules from alkanes to deep eutectic solvents. Fluid Phase Equilibria, 2017, 448, 99-104.	2.5	55
75	Lithium ion battery recycling using high-intensity ultrasonication. Green Chemistry, 2021, 23, 4710-4715.	9.0	55
76	Electrodeposition of copper–tin alloys using deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2016, 94, 104-113.	1.3	53
77	Ionic liquids form ideal solutions. Chemical Communications, 2011, 47, 11876.	4.1	52
78	Debondable adhesives and their use in recycling. Green Chemistry, 2022, 24, 36-61.	9.0	50
79	Time Resolved in Situ Liquid Atomic Force Microscopy and Simultaneous Acoustic Impedance Electrochemical Quartz Crystal Microbalance Measurements: A Study of Zn Deposition. Analytical Chemistry, 2009, 81, 8466-8471.	6.5	49
80	Electrochemical fabrication of nanoporous copper films in choline chloride–urea deep eutectic solvent. Physical Chemistry Chemical Physics, 2015, 17, 14702-14709.	2.8	48
81	Facile fabrication of nickel nanostructures on a copper-based template via a galvanic replacement reaction in a deep eutectic solvent. Electrochemistry Communications, 2016, 70, 60-64.	4.7	48
82	Deep eutectic solvents—The vital link between ionic liquids and ionic solutions. Journal of Chemical Physics, 2021, 155, 150401.	3.0	45
83	Electrochemical Reduction of CO2 in a Mixed Supercritical Fluid. Journal of Physical Chemistry B, 2000, 104, 775-779.	2.6	44
84	Novel Ambient Temperature Ionic Liquids for Zinc and Zinc Alloy Electrodeposition. Transactions of the Institute of Metal Finishing, 2001, 79, 204-206.	1.3	44
85	Do group 1 metal salts form deep eutectic solvents?. Physical Chemistry Chemical Physics, 2016, 18, 25528-25537.	2.8	43
86	Dissolution of pyrite and other Fe–S–As minerals using deep eutectic solvents. Green Chemistry, 2017, 19, 2225-2233.	9.0	43
87	Electrochemical investigations in liquid and supercritical 1,1,1,2-tetrafluoroethane (HFC 134a) and difluoromethane (HFC 32). Journal of Electroanalytical Chemistry, 1998, 457, 1-4.	3.8	42
88	Electropolishing of nickel and cobalt in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2018, 96, 200-205.	1.3	42
89	Deep eutectic solvents and their application in electrochemistry. Current Opinion in Green and Sustainable Chemistry, 2022, 36, 100649.	5.9	41
90	Solvent Properties of Liquid and Supercritical Hydrofluorocarbons. Journal of Physical Chemistry B, 1999, 103, 2504-2509.	2.6	40

#	Article	IF	CITATIONS
91	Synthesis of a base-stock for electrical insulating fluid based on palm kernel oil. Industrial Crops and Products, 2011, 33, 532-536.	5.2	40
92	Separation of nickel from cobalt and manganese in lithium ion batteries using deep eutectic solvents. Green Chemistry, 2022, 24, 4877-4886.	9.0	39
93	Processing metal oxides using ionic liquids. Institutions of Mining and Metallurgy Transactions Section C: Mineral Processing and Extractive Metallurgy, 2006, 115, 15-18.	0.6	38
94	Solvent Properties of Liquid and Supercritical 1,1,1,2-Tetrafluoroethane. Journal of Physical Chemistry B, 1998, 102, 8574-8578.	2.6	37
95	In Situ Electrochemical Digital Holographic Microscopy; a Study of Metal Electrodeposition in Deep Eutectic Solvents. Analytical Chemistry, 2013, 85, 6653-6660.	6.5	37
96	Processing of Leather Using Deep Eutectic Solvents. ACS Sustainable Chemistry and Engineering, 2015, 3, 1241-1247.	6.7	36
97	Correlations between solvent polarity scales and electron transfer kinetics and an application to micellar media. Journal of Electroanalytical Chemistry, 1992, 327, 31-46.	3.8	35
98	Electrochemical oxidation as alternative for dissolution of metal oxides in deep eutectic solvents. Green Chemistry, 2020, 22, 8360-8368.	9.0	34
99	Conductivity of (C4H9)4N BF4in Liquid and Supercritical Hydrofluorocarbons. Journal of Physical Chemistry B, 2000, 104, 9351-9355.	2.6	33
100	Probing the structure of gas expanded liquids using relative permittivity, density and polarity measurements. Green Chemistry, 2009, 11, 1530.	9.0	33
101	Recovery of yttrium and europium from spent fluorescent lamps using pure levulinic acid and the deep eutectic solvent levulinic acid–choline chloride. RSC Advances, 2020, 10, 28879-28890.	3.6	33
102	Thermoplastic starch–polyethylene blends homogenised using deep eutectic solvents. RSC Advances, 2017, 7, 7268-7273.	3.6	32
103	Solubility of Substituted Aromatic Hydrocarbons in Supercritical Difluoromethane. Journal of Chemical & Engineering Data, 2002, 47, 900-905.	1.9	30
104	Metal finishing with ionic liquids: scale-up and pilot plants from IONMET consortium. Transactions of the Institute of Metal Finishing, 2010, 88, 285-293.	1.3	30
105	Starch as a replacement for urea-formaldehyde in medium density fibreboard. Green Chemistry, 2012, 14, 3067.	9.0	30
106	Effect of water on the electrodeposition of copper on nickel in deep eutectic solvents. Transactions of the Institute of Metal Finishing, 2019, 97, 321-329.	1.3	30
107	Relative Permittivity Measurements of 1,1,1,2-Tetrafluoroethane (HFC 134a), Pentafluoroethane (HFC) Tj ETQq1 I	1 0.78431 1.9	4.rgBT /Ove
108	Ligand exchange in ionic systems and its effect on silver nucleation and growth. Physical Chemistry Chemical Physics, 2013, 15, 17314.	2.8	29

#	Article	IF	CITATIONS
109	Electron transfer between amphiphilic ferrocenes and electrodes in cationic micellar solution. The Journal of Physical Chemistry, 1992, 96, 11091-11095.	2.9	28
110	Electrolytic processing of superalloy aerospace castings using choline chloride-based ionic liquids. Transactions of the Institute of Metal Finishing, 2012, 90, 9-14.	1.3	28
111	Glycol based plasticisers for salt modified starch. RSC Advances, 2014, 4, 40421-40427.	3.6	28
112	Effect of solute polarity on extraction efficiency using deep eutectic solvents. Green Chemistry, 2021, 23, 5097-5105.	9.0	28
113	Nanoscale Clustering of Alcoholic Solutes in Deep Eutectic Solvents Studied by Nuclear Magnetic Resonance and Dynamic Light Scattering. ACS Sustainable Chemistry and Engineering, 2019, 7, 15086-15092.	6.7	26
114	Mechanism of selective gold extraction from multi-metal chloride solutions by electrodeposition-redox replacement. Green Chemistry, 2020, 22, 3615-3625.	9.0	26
115	Tetrakis(decyl)ammonium tetraphenylborate: a novel electrolyte for non-polar media. Journal of the Chemical Society, Faraday Transactions, 1996, 92, 1747.	1.7	25
116	Conductivity of long chain quaternary ammonium electrolytes in cyclohexane. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 577-582.	1.7	23
117	Double layer capacitance and conductivity studies of long chain quaternary ammonium electrolytes in supercritical carbon dioxide. Physical Chemistry Chemical Physics, 1999, 1, 839-841.	2.8	23
118	Solvent Properties of Supercritical CO2/HFC134a Mixtures. Journal of Physical Chemistry B, 1999, 103, 8790-8793.	2.6	22
119	Electrochemistry in media of low dielectric constant. Chemical Society Reviews, 1993, 22, 435.	38.1	21
120	Effect of side chains on the dielectric properties of alkyl esters derived from palm kernel oil. , 2011, , .		21
121	Effect of ionic equilibria on redox potentials in supercritical difluoromethane. Physical Chemistry Chemical Physics, 2001, 3, 579-582.	2.8	19
122	Effect of Electrolyte Concentration on the Viscosity and Voltammetry of Supercritical Solutions. Analytical Chemistry, 2005, 77, 6702-6708.	6.5	19
123	Solvent effects on electron-transfer kinetics: a correlation of rate constants with solvent acidity, basicity, and polarizability parameters. The Journal of Physical Chemistry, 1990, 94, 8910-8912.	2.9	18
124	Electrolytic Metal Coatings and Metal Finishing Using Ionic Liquids. ECS Transactions, 2009, 16, 47-63.	0.5	18
125	Pilot trials of immersion silver deposition using a choline chloride based ionic liquid. Circuit World, 2010, 36, 3-9.	0.9	18
126	Paint casting: A facile method of studying mineral electrochemistry. Electrochemistry Communications, 2017, 76, 20-23.	4.7	18

#	Article	IF	CITATIONS
127	Globular and Fibrous Proteins Modified with Deep Eutectic Solvents: Materials for Drug Delivery. Molecules, 2019, 24, 3583.	3.8	18
128	Separation of iron(<scp>iii</scp>), zinc(<scp>ii</scp>) and lead(<scp>ii</scp>) from a choline chloride–ethylene glycol deep eutectic solvent by solvent extraction. RSC Advances, 2020, 10, 33161-33170.	3.6	18
129	Complexes of Rh(C5Me5) with picolinic acid, pyrones and pyridinones. Journal of the Chemical Society Dalton Transactions, 1995, , 3709.	1.1	17
130	Novel Room Temperature Molten Salts for Aluminium Electrodeposition. Transactions of the Institute of Metal Finishing, 1999, 77, 26-28.	1.3	17
131	Electrochemical Studies of Ambient Temperature Ionic Liquids Based on Choline Chloride. ACS Symposium Series, 2003, , 439-452.	0.5	17
132	Gamma-phase Zn-Ni alloy deposition by pulse-electroplating from a modified deep eutectic solution. Surface and Coatings Technology, 2020, 403, 126434.	4.8	17
133	Titanium electrodeposition from aromatic solvents. Journal of Electroanalytical Chemistry, 1993, 347, 153-164.	3.8	16
134	Electropolishing and Electroplating of Metals Using Ionic Liquids Based on Choline Chloride. ACS Symposium Series, 2007, , 186-197.	0.5	16
135	Calcium chloride-based systems for metal electrodeposition. Electrochimica Acta, 2022, 402, 139560.	5.2	16
136	Double Layer Structure in a Supercritical Fluid. Journal of Physical Chemistry B, 1999, 103, 6157-6159.	2.6	15
137	Nanomagnetic domains of chromium deposited on vertically-aligned carbon nanotubes. Journal of Magnetism and Magnetic Materials, 2012, 324, 4170-4174.	2.3	15
138	Evidence supporting an emulsion polymerisation mechanism for the formation of polyaniline. Electrochimica Acta, 2020, 354, 136737.	5.2	15
139	Analysis of dipolarity/polarisability parameter, ï€*, for a range of supercritical fluids. Physical Chemistry Chemical Physics, 2001, 3, 3722-3726.	2.8	14
140	Electrochemical Recognition of Chiral Species Using Quaternary Ammonium Binaphthyl Salts. Analytical Chemistry, 2002, 74, 4002-4006.	6.5	14
141	Hydrogen Bond Interactions in Liquid and Supercritical Hydrofluorocarbons. Journal of Physical Chemistry B, 2003, 107, 10628-10633.	2.6	14
142	Potential dependence of the interfacial impedance of p-(100) silicon in KOH. Journal of Electroanalytical Chemistry, 1992, 328, 355-360.	3.8	13
143	CO2/HFC 134a mixtures: alternatives for supercritical fluid extraction. Green Chemistry, 2000, 2, 63-66.	9.0	13
144	Electrochemistry: general discussion. Faraday Discussions, 2018, 206, 405-426.	3.2	13

#	Article	IF	CITATIONS
145	Investigating the dissolution of iron sulfide and arsenide minerals in deep eutectic solvents. Hydrometallurgy, 2020, 198, 105511.	4.3	13
146	Iron(III) chloride and acetamide eutectic for the electrodeposition of iron and iron based alloys. Electrochimica Acta, 2020, 351, 136414.	5.2	13
147	Controlled release of pharmaceutical agents using eutectic modified gelatin. Drug Delivery and Translational Research, 2022, 12, 1187-1194.	5.8	13
148	Catalytic dissolution of metals from printed circuit boards using a calcium chloride–based deep eutectic solvent. Green Chemistry, 2022, 24, 3023-3034.	9.0	13
149	Oxidation of Molybdenum(0) and Tungsten(0) Carbonyl Complexes with Silver Triflate. Organometallics, 1997, 16, 3690-3695.	2.3	12
150	Solubility of unsaturated carboxylic acids in supercritical 1,1,1,2-tetrafluoroethane (HFC 134a) and a methodology for the separation of ternary mixtures. Green Chemistry, 2005, 7, 210.	9.0	12
151	Shifting Desulfurization Equilibria in Ionic Liquid–Oil Mixtures. Energy & Fuels, 2019, 33, 1106-1113.	5.1	12
152	Hydrogenation in supercritical 1,1,1,2 tetrafluoroethane (HFC 134a). Green Chemistry, 2005, 7, 721.	9.0	11
153	Controlling phase behaviour on gas expansion of fluid mixtures. Green Chemistry, 2009, 11, 1536.	9.0	11
154	Corrosion of iron, nickel and aluminium in deep eutectic solvents. Electrochimica Acta, 2021, 397, 139284.	5.2	11
155	Gelatin and Alginate Binders for Simplified Battery Recycling. Journal of Physical Chemistry C, 2022, 126, 8489-8498.	3.1	11
156	Anisotropic etching of silicon at high pressure. Journal of Electroanalytical Chemistry, 1993, 348, 473-479.	3.8	10
157	Equilibrium Reactions in Supercritical Difluoromethane. Journal of Physical Chemistry B, 2004, 108, 4922-4926.	2.6	10
158	Probing Solute Clustering in Supercritical Solutions Using Solvatochromic Parameters. Journal of Physical Chemistry B, 2007, 111, 8119-8125.	2.6	10
159	Metal deposition from aromatic solvents. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1989, 261, 449-453.	0.1	9
160	Synthesis of novel donor–acceptor twins. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3356-3361.	1.3	9
161	Effect of Solutes on the Viscosity of Supercritical Solutions. Journal of Physical Chemistry B, 2007, 111, 8114-8118.	2.6	9
162	Lubrication studies of some type III deep eutectic solvents (DESs). AIP Conference Proceedings, 2017, , .	0.4	9

#	Article	IF	CITATIONS
163	Redox fusion of metal particles using deep eutectic solvents. Chemical Communications, 2018, 54, 3049-3052.	4.1	9
164	Experimental Visualization of Commercial Lithium Ion Battery Cathodes: Distinguishing Between the Microstructure Components Using Atomic Force Microscopy. Journal of Physical Chemistry C, 2020, 124, 14622-14631.	3.1	9
165	Chemical Dissolution of Chalcopyrite Concentrate in Choline Chloride Ethylene Glycol Deep Eutectic Solvent. Minerals (Basel, Switzerland), 2022, 12, 65.	2.0	9
166	Double-layer studies in solutions of low relative permittivity. Journal of the Chemical Society, Faraday Transactions, 1997, 93, 3981-3984.	1.7	8
167	Two versatile new routes to dinuclear molybdenum dithiolene complexes. Chemical Communications, 1998, , 389-390.	4.1	8
168	Pressure Effects on Friedel-Crafts Alkylation Reactions in Supercritical Difluoromethane. ChemPhysChem, 2005, 6, 466-472.	2.1	8
169	Physical Properties of Ionic Liquids for Electrochemical Applications. , 0, , 47-82.		8
170	Phase behaviour and thermodynamics: general discussion. Faraday Discussions, 2017, 206, 113-139.	3.2	8
171	Quartz crystal microbalance study of the adsorption of ions onto gold from non-aqueous solvents. Journal of the Chemical Society, Faraday Transactions, 1994, 90, 1533.	1.7	7
172	Study of silver electrodeposition in deep eutectic solvents using atomic force microscopy. Transactions of the Institute of Metal Finishing, 2018, 96, 297-303.	1.3	7
173	3-D printed polyvinyl alcohol matrix for detection of airborne pathogens in respiratory bacterial infections. Microbiological Research, 2020, 241, 126587.	5.3	7
174	Amidine-based ionic liquid analogues with AlCl ₃ : a credible new electrolyte for rechargeable Al batteries. Chemical Communications, 2021, 57, 9834-9837.	4.1	7
175	Potential Dependence of Surfactant Adsorption at the Graphite Electrode/Deep Eutectic Solvent Interface. Journal of Physical Chemistry Letters, 2019, 10, 5331-5337.	4.6	6
176	Deep eutectic solvents—Teaching nature lessons that it knew already. Advances in Botanical Research, 2021, 97, 1-16.	1.1	6
177	23Na NMR <i>T</i> 1 relaxation measurements as a probe for diffusion and dynamics of sodium ions in salt–glycerol mixtures. Journal of Chemical Physics, 2021, 154, 224501.	3.0	6
178	Electrodeposition of Semiconductors in Ionic Liquids. , 0, , 147-165.		6
179	Voltammetry in non-aqueous solvents: artefacts arising from slow electrolyte desorption. Journal of Electroanalytical Chemistry, 2002, 520, 6-12.	3.8	5
180	Polymerisation of methyl methacrylate in supercritical difluoromethane. Green Chemistry, 2004, 6, 81.	9.0	5

1

#	ARTICLE	IF	CITATIONS
181	A Unified Method for the Recovery of Metals from Chalcogenides. ACS Sustainable Chemistry and Engineering, 2021, 9, 2929-2936.	6.7	5
182	Future Directions and Challenges. , 0, , 369-377.		5
183	Enhanced solvent properties of aromatic hydrocarbon mixtures. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1988, 256, 477-480.	0.1	4
184	Mechanical properties of 3-D printed polyvinyl alcohol matrix for detection of respiratory pathogens. Journal of the Mechanical Behavior of Biomedical Materials, 2020, 112, 104066.	3.1	4
185	New solvents for Electroplating. Transactions of the Institute of Metal Finishing, 1988, 66, 99-101.	1.3	3
186	Characterisation of solvent properties of aromatic hydrocarbon mixtures. Journal of the Chemical Society, Faraday Transactions, 1990, 86, 1449.	1.7	3
187	Electrochemical recognition of charged species using quaternary ammonium binaphthyl salts. Analyst, The, 2001, 126, 1892-1896.	3.5	3
188	Electrochemical recognition of analytes using quaternary ammonium binaphthyl salts. Analyst, The, 2003, 128, 245-248.	3.5	3
189	Polymer modification using difluoromethane (HFC 32) and carbon dioxide. Journal of Polymer Science, Part B: Polymer Physics, 2006, 44, 1072-1083.	2.1	3
190	Technical Aspects. , 0, , 287-351.		3
191	Influence of the Alkali-promoted phase transformation in monazite for selective recovery of rare-oxides using deep eutectic solvents. Minerals Engineering, 2022, 182, 107564.	4.3	3
192	Novel complexes with new electro-optic properties. Journal of the Chemical Society Chemical Communications, 1994, , 1935.	2.0	2
193	Electrochemistry of quaternary ammonium binaphthyl salts. Chemical Communications, 1999, , 641-642.	4.1	2
194	Green Organometallic Chemistry. , 2007, , 837-864.		1
195	Conducting Polymers. , 0, , 167-211.		1
196	From Test Tube to Turner – the Role of the Chemist in Art. Science Progress, 2013, 96, 398-416.	1.9	1
197	Plating Protocols. , 0, , 353-367.		1

198 Electrodeposition on the Nanometer Scale:In Situ Scanning Tunneling Microscopy. , 0, , 239-257.

#	Article	IF	CITATIONS
199	Environmentally Sustainable Solvent-based Process Chemistry for Metals in Printed Circuit Boards. Issues in Environmental Science and Technology, 2019, , 278-312.	0.4	1
200	The Regiospecific Fischer Indole Reaction in Choline Chloride×2ZnCl2 with Product Isolation by Direct Sublimation from the Ionic Liquid ChemInform, 2004, 35, no.	0.0	0
201	Electrolytic Metal Coatings and Metal Finishing Using Ionic Liquids. ECS Meeting Abstracts, 2008, , .	0.0	0
202	Ionic liquids at interfaces: general discussion. Faraday Discussions, 2018, 206, 549-586.	3.2	0