Lei Mei

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182109/publications.pdf Version: 2024-02-01

l fi Mfi

#	Article	IF	CITATIONS
1	Genome-wide characterization on MT family and their expression in response to environmental cues in upland cotton (Gossypium hirsutum L.). International Journal of Biological Macromolecules, 2022, 198, 54-67.	7.5	2
2	The complete chloroplast genome sequence of <i>Gynura cusimbua</i> (D. Don) S. Moore. Mitochondrial DNA Part B: Resources, 2022, 7, 96-97.	0.4	2
3	A Comparative Study of Flavonoids and Carotenoids Revealed Metabolite Responses for Various Flower Colorations Between Nicotiana tabacum L. and Nicotiana rustica L Frontiers in Plant Science, 2022, 13, 828042.	3.6	6
4	Mercury-Induced Phytotoxicity and Responses in Upland Cotton (Gossypium hirsutum L.) Seedlings. Plants, 2021, 10, 1494.	3.5	16
5	qOil-3, a major QTL identification for oil content in cottonseed across genomes and its candidate gene analysis. Industrial Crops and Products, 2020, 145, 112070.	5.2	11
6	Cotton roots are the major source of gossypol biosynthesis and accumulation. BMC Plant Biology, 2020, 20, 88.	3.6	21
7	Genome-wide analysis of genetic variations between dominant and recessive NILs of glanded and glandless cottons. Scientific Reports, 2019, 9, 9226.	3.3	7
8	Characterizations of male sterility in a glyphosate-tolerant upland cotton (Gossypium hirsutum L.) induced by glyphosate and its assessments on safety utilization. Industrial Crops and Products, 2019, 134, 318-327.	5.2	2
9	Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton. BMC Genomics, 2018, 19, 910.	2.8	12
10	Determination of gossypol content in cottonseeds by near infrared spectroscopy based on Monte Carlo uninformative variable elimination and nonlinear calibration methods. Food Chemistry, 2017, 221, 990-996.	8.2	43
11	Genome-Wide SNP Linkage Mapping and QTL Analysis for Fiber Quality and Yield Traits in the Upland Cotton Recombinant Inbred Lines Population. Frontiers in Plant Science, 2016, 7, 1356.	3.6	105
12	Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environmental Science and Pollution Research, 2016, 23, 15551-15564.	5.3	39
13	Pretreatment with salicylic acid and ascorbic acid significantly mitigate oxidative stress induced by copper in cotton genotypes. Environmental Science and Pollution Research, 2015, 22, 9922-9931.	5.3	40
14	<i>In Vitro</i> Cadmium-Induced Alterations in Growth and Oxidative Metabolism of Upland Cotton (<i>Gossypium hirsutum</i> L.). Scientific World Journal, The, 2014, 2014, 1-10.	2.1	7
15	Chromium (VI) Uptake and Tolerance Potential in Cotton Cultivars: Effect on Their Root Physiology, Ultramorphology, and Oxidative Metabolism. BioMed Research International, 2014, 2014, 1-12.	1.9	44
16	Cadmium-Induced Upregulation of Lipid Peroxidation and Reactive Oxygen Species Caused Physiological, Biochemical, and Ultrastructural Changes in Upland Cotton Seedlings. BioMed Research International, 2013, 2013, 1-10.	1.9	31