John O Miners

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2182020/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cytochrome P4502C9: an enzyme of major importance in human drug metabolism. British Journal of Clinical Pharmacology, 1998, 45, 525-538.	1.1	752
2	Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenetics and Genomics, 2005, 15, 677-685.	0.7	708
3	The role of the CFP2C9-Leu 359 allelic variant in the tolbutamide polymorphism. Pharmacogenetics and Genomics, 1996, 6, 341-349.	5.7	600
4	The UDP-glucuronosyltransferases: Their role in drug metabolism and detoxification. International Journal of Biochemistry and Cell Biology, 2013, 45, 1121-1132.	1.2	540
5	Drug glucuronidation in humans. , 1991, 51, 347-369.		317
6	HUMAN UDP-GLUCURONOSYLTRANSFERASES: ISOFORM SELECTIVITY AND KINETICS OF 4-METHYLUMBELLIFERONE AND 1-NAPHTHOL GLUCURONIDATION, EFFECTS OF ORGANIC SOLVENTS, AND INHIBITION BY DICLOFENAC AND PROBENECID. Drug Metabolism and Disposition, 2004, 32, 413-423.	1.7	311
7	Genetic polymorphism of UDP-glucuronosyltransferase 2B7 (UGT2B7) at amino acid 268: ethnic diversity of alleles and potential clinical significance. Pharmacogenetics and Genomics, 2000, 10, 679-685.	5.7	234
8	The effects of buthionine sulphoximine (BSO) on glutathione depletion and xenobiotic biotransformation. Biochemical Pharmacology, 1984, 33, 2989-2994.	2.0	228
9	SELECTIVITY OF SUBSTRATE (TRIFLUOPERAZINE) AND INHIBITOR (AMITRIPTYLINE, ANDROSTERONE,) Tj ETQq1 1 FOR HUMAN UDP-GLUCURONOSYLTRANSFERASES. Drug Metabolism and Disposition, 2006, 34, 449-456.	0.784314 1.7	rgBT /Over 217
10	In vitro–in vivo correlation for drugs and other compounds eliminated by glucuronidation in humans: Pitfalls and promises. Biochemical Pharmacology, 2006, 71, 1531-1539.	2.0	212
11	PREDICTINGHUMANDRUGGLUCURONIDATIONPARAMETERS: Application of In Vitro and In Silico Modeling Approaches. Annual Review of Pharmacology and Toxicology, 2004, 44, 1-25.	4.2	203
12	The prediction of drug-glucuronidation parameters in humans: UDP-glucuronosyltransferase enzyme-selective substrate and inhibitor probes for reaction phenotyping and <i>in vitro–in vivo</i> extrapolation of drug clearance and drug-drug interaction potential. Drug Metabolism Reviews, 2010, 42, 196-208.	1.5	202
13	Diazepam metabolism by human liver microsomes is mediated by both S―mephenytoin hydroxylase and CYP3A isoforms British Journal of Clinical Pharmacology, 1994, 38, 131-137.	1.1	196
14	Association Between Body Mass Index and Overall Survival With Immune Checkpoint Inhibitor Therapy for Advanced Non–Small Cell Lung Cancer. JAMA Oncology, 2020, 6, 512.	3.4	194
15	ISOFORM SELECTIVITY AND KINETICS OF MORPHINE 3- AND 6-GLUCURONIDATION BY HUMAN UDP-GLUCURONOSYLTRANSFERASES: EVIDENCE FOR ATYPICAL GLUCURONIDATION KINETICS BY UGT2B7. Drug Metabolism and Disposition, 2003, 31, 1086-1089.	1.7	193
16	Identification of human liver cytochrome P450 isoforms mediating omeprazole metabolism. British Journal of Clinical Pharmacology, 1993, 36, 521-530.	1.1	188
17	Tolbutamide and phenytoin hydroxylations by cDNA-expressed human liver cytochrome P4502C9. Biochemical and Biophysical Research Communications, 1991, 175, 1112-1118.	1.0	187
18	IN VITRO CHARACTERIZATION OF LAMOTRIGINEN2-GLUCURONIDATION AND THE LAMOTRIGINE-VALPROIC ACID INTERACTION. Drug Metabolism and Disposition, 2006, 34, 1055-1062.	1.7	186

#	Article	IF	CITATIONS
19	Genetic polymorphisms of UDP-glucuronosyltransferases and their functional significance. Toxicology, 2002, 181-182, 453-456.	2.0	176
20	Caffeine metabolism by human hepatic cytochromes p450: Contributions of 1A2, 2E1 and 3A isoforms. Biochemical Pharmacology, 1994, 47, 1767-1776.	2.0	174
21	Tolbutamide hydroxylation by human liver microsomes. Biochemical Pharmacology, 1988, 37, 1137-1144.	2.0	170
22	Influence of sex and oral contraceptive steroids on paracetamol metabolism British Journal of Clinical Pharmacology, 1983, 16, 503-509.	1.1	168
23	Renal drug metabolism in humans: the potential for drug–endobiotic interactions involving cytochrome P450 (<scp>CYP</scp>) and <scp>UDP</scp> â€glucuronosyltransferase (<scp>UGT</scp>). British Journal of Clinical Pharmacology, 2013, 76, 587-602.	1.1	162
24	Quantitative prediction ofin vivoinhibitory interactions involving glucuronidated drugs fromin vitrodata: the effect of fluconazole on zidovudine glucuronidation. British Journal of Clinical Pharmacology, 2006, 61, 427-439.	1.1	154
25	Assessment of caffeine exposure: Caffeine content of beverages, caffeine intake, and plasma concentrations of methylxanthines. Clinical Pharmacology and Therapeutics, 1986, 39, 54-59.	2.3	153
26	Binding of Inhibitory Fatty Acids Is Responsible for the Enhancement of UDP-Glucuronosyltransferase 2B7 Activity by Albumin: Implications for in Vitro-in Vivo Extrapolation. Journal of Pharmacology and Experimental Therapeutics, 2007, 321, 137-147.	1.3	148
27	The "Albumin Effect―and Drug Glucuronidation: Bovine Serum Albumin and Fatty Acid-Free Human Serum Albumin Enhance the Glucuronidation of UDP-Glucuronosyltransferase (UGT) 1A9 Substrates but Not UGT1A1 and UGT1A6 Activities. Drug Metabolism and Disposition, 2008, 36, 1056-1062.	1.7	147
28	Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. Journal of Personalized Medicine, 2018, 8, 1.	1.1	136
29	Comparative pharmacokinetics of caffeine and its primary demethylated metabolites paraxanthine, theobromine and theophylline in man British Journal of Clinical Pharmacology, 1986, 22, 177-182.	1.1	129
30	Identification of human liver cytochrome P450 isoforms mediating secondary omeprazole metabolism British Journal of Clinical Pharmacology, 1994, 37, 597-604.	1.1	128
31	Nonspecific binding of drugs to human liver microsomes. British Journal of Clinical Pharmacology, 2000, 49, 453-461.	1.1	124
32	Cytochromes P450, 1A2, and 2C9 are responsible for the human hepatic O-demethylation of R- and S-naproxen. Biochemical Pharmacology, 1996, 51, 1003-1008.	2.0	122
33	Mechanism of action of paracetamol protective agents in mice in vivo. Biochemical Pharmacology, 1984, 33, 2995-3000.	2.0	121
34	Validation of 4-nitrophenol as an in vitro substrate probe for human liver CYP2E1 using cDNA expression and microsomal kinetic techniques. Biochemical Pharmacology, 1993, 46, 1975-1981.	2.0	119
35	Quantitative assessment of caffeine partial clearances in man British Journal of Clinical Pharmacology, 1986, 22, 183-186.	1.1	110
36	Characterisation of theophylline metabolism by human liver microsomes. Biochemical Pharmacology, 1988, 37, 1651-1659.	2.0	109

#	Article	IF	CITATIONS
37	In vitro-in vivo correlations for drugs eliminated by glucuronidation: Investigations with the model substrate zidovudine. British Journal of Clinical Pharmacology, 2002, 54, 493-503.	1.1	106
38	Validation of the tolbutamide metabolic ratio for population screening with use of sulfaphenazole to produce model phenotypic poor metabolizers. Clinical Pharmacology and Therapeutics, 1990, 47, 403-411.	2.3	105
39	cDNA Cloning and Expression of Two New Members of the Human Liver UDP-Glucuronosyltransferase 2B Subfamily. Biochemical and Biophysical Research Communications, 1993, 194, 496-503.	1.0	105
40	The Configuration of the 17-Hydroxy Group Variably Influences the Glucuronidation of β-Estradiol and Epiestradiol by Human UDP-Glucuronosyltransferases. Drug Metabolism and Disposition, 2008, 36, 2307-2315.	1.7	104
41	The glycosidation of xenobiotics and endogenous compounds: Versatility and redundancy in the UDP glycosyltransferase superfamily. , 2012, 134, 200-218.		104
42	Characterization of Niflumic Acid as a Selective Inhibitor of Human Liver Microsomal UDP-Glucuronosyltransferase 1A9: Application to the Reaction Phenotyping of Acetaminophen Glucuronidation. Drug Metabolism and Disposition, 2011, 39, 644-652.	1.7	99
43	Characterisation of theophylline metabolism in human liver microsomes British Journal of Clinical Pharmacology, 1987, 24, 293-300.	1.1	98
44	Polymorphisms in UDP Glucuronosyltransferase Genes: Functional Consequences and Clinical Relevance. Clinical Chemistry and Laboratory Medicine, 2000, 38, 889-92.	1.4	97
45	Caffeine as a probe for human cytochromes P450. Pharmacogenetics and Genomics, 1992, 2, 173.	5.7	95
46	Determinants of acetaminophen metabolism: Effect of inducers and inhibitors of drug metabolism on acetaminophen's metabolic pathways. Clinical Pharmacology and Therapeutics, 1984, 35, 480-486.	2.3	93
47	Relationship between phenytoin and tolbutamide hydroxylations in human liver microsomes British Journal of Clinical Pharmacology, 1991, 31, 125-130.	1.1	93
48	The glucuronidation of mycophenolic acid by human liver, kidney and jejunum microsomes. British Journal of Clinical Pharmacology, 2001, 52, 605-609.	1.1	93
49	The use of caffeine as a metabolic probe for human drug metabolizing enzymes. General Pharmacology, 1996, 27, 245-249.	0.7	92
50	S-Naproxen and desmethylnaproxen glucuronidation by human liver microsomes and recombinant human UDP-glucuronosyltransferases (UGT): role of UGT2B7 in the elimination of naproxen. British Journal of Clinical Pharmacology, 2005, 60, 423-433.	1.1	91
51	Mechanism-Based Inactivation of Human Cytochrome P4502C8 by Drugs in Vitro. Journal of Pharmacology and Experimental Therapeutics, 2004, 311, 996-1007.	1.3	90
52	Additivity relations in carbon-13 nuclear magnetic resonance spectra of dihydroxy steroids. Journal of Organic Chemistry, 1977, 42, 789-793.	1.7	88
53	Comparison of Linear and Nonlinear Classification Algorithms for the Prediction of Drug and Chemical Metabolism by Human UDP-Glucuronosyltransferase Isoforms. Journal of Chemical Information and Computer Sciences, 2003, 43, 2019-2024.	2.8	87
54	Influence of mutations associated with Gilbert and Crigler–Najjar type II syndromes on the glucuronidation kinetics of bilirubin and other UDP-glucuronosyltransferase 1A substrates. Pharmacogenetics and Genomics, 2007, 17, 1017-1029.	0.7	86

#	Article	IF	CITATIONS
55	Amino acid conjugation: contribution to the metabolism and toxicity of xenobiotic carboxylic acids. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 159-168.	1.5	86
56	Defining the COX inhibitor selectivity of NSAIDs: implications for understanding toxicity. Expert Review of Clinical Pharmacology, 2010, 3, 769-776.	1.3	84
57	"Phase I and Phase II―Drug Metabolism: Terminology that we Should Phase Out?. Drug Metabolism Reviews, 2005, 37, 575-580.	1.5	83
58	Allelic and functional variability of cytochrome P4502C9. Pharmacogenetics and Genomics, 1997, 7, 51-58.	5.7	83
59	Identification of UDP Glycosyltransferase 3A1 as a UDP N-Acetylglucosaminyltransferase. Journal of Biological Chemistry, 2008, 283, 36205-36210.	1.6	81
60	Influence of gender and oral contraceptive steroids on the metabolism of salicylic acid and acetylsalicylic acid British Journal of Clinical Pharmacology, 1986, 22, 135-142.	1.1	79
61	Cytochrome P450 structure–function: insights from molecular dynamics simulations. Drug Metabolism Reviews, 2016, 48, 434-452.	1.5	79
62	Differential effects of cimetidine on theophylline metabolic pathways. European Journal of Clinical Pharmacology, 1984, 26, 335-340.	0.8	78
63	Evidence that unsaturated fatty acids are potent inhibitors of renal UDP-glucuronosyltransferases (UGT): kinetic studies using human kidney cortical microsomes and recombinant UGT1A9 and UGT2B7. Biochemical Pharmacology, 2004, 67, 191-199.	2.0	78
64	In vitro approaches can predict human drug metabolism. Trends in Pharmacological Sciences, 1993, 14, 292-294.	4.0	75
65	Pharmacophore and quantitative structure activity relationship modelling of UDP-glucuronosyltransferase 1A1 (UGT1A1) substrates. Pharmacogenetics and Genomics, 2002, 12, 635-645.	5.7	75
66	Quantitative prediction of macrolide drug-drug interaction potential from in vitro studies using testosterone as the human cytochrome P4503A substrate. European Journal of Clinical Pharmacology, 2006, 62, 203-208.	0.8	75
67	The "Albumin Effect―and in Vitro-in Vivo Extrapolation: Sequestration of Long-Chain Unsaturated Fatty Acids Enhances Phenytoin Hydroxylation by Human Liver Microsomal and Recombinant Cytochrome P450 2C9. Drug Metabolism and Disposition, 2008, 36, 870-877.	1.7	74
68	The Role of the Kidney in Drug Elimination: Transport, Metabolism, and the Impact of Kidney Disease on Drug Clearance. Clinical Pharmacology and Therapeutics, 2017, 102, 436-449.	2.3	74
69	Evidence for involvement of human CYP3A in the 3â€hydroxylation of quinine. British Journal of Clinical Pharmacology, 1997, 43, 245-252.	1.1	73
70	The xenobiotic inhibitor profile of cytochrome P4502C8. British Journal of Clinical Pharmacology, 2000, 50, 573-580.	1.1	73
71	Electrochemical characterisation of the human cytochrome P450 CYP2C9. Biochemical Pharmacology, 2005, 69, 1533-1541.	2.0	72
72	Paracetamol metabolism in pregnancy British Journal of Clinical Pharmacology, 1986, 22, 359-362.	1.1	71

#	Article	IF	CITATIONS
73	In Vitro–In Vivo Extrapolation Predicts Drug–Drug Interactions Arising from Inhibition of Codeine Glucuronidation by Dextropropoxyphene, Fluconazole, Ketoconazole, and Methadone in Humans. Journal of Pharmacology and Experimental Therapeutics, 2010, 334, 609-618.	1.3	71
74	Perpetrators of pharmacokinetic drug–drug interactions arising from altered cytochrome P450 activity: a criteriaâ€based assessment. British Journal of Clinical Pharmacology, 2011, 71, 727-736.	1.1	71
75	In vitro proguanil activation to cycloguanil by human liver microsomes is mediated by CYP3A isoforms as well as by Sâ€mephenytoin hydroxylase British Journal of Clinical Pharmacology, 1994, 37, 413-420.	1.1	70
76	Pharmacophore and Quantitative Structureâ^'Activity Relationship Modeling:Â Complementary Approaches for the Rationalization and Prediction of UDP-Glucuronosyltransferase 1A4 Substrate Selectivity. Journal of Medicinal Chemistry, 2003, 46, 1617-1626.	2.9	70
77	Prediction of Metabolism by Cytochrome P450 2C9: Alignment and Docking Studies of a Validated Database of Substrates. Journal of Medicinal Chemistry, 2008, 51, 780-791.	2.9	70
78	[15] Use of tolbutamide as a substrate probe for human hepatic cytochrome P450 2C9. Methods in Enzymology, 1996, 272, 139-145.	0.4	69
79	Comparison of paracetamol metabolism in young adult and elderly males. European Journal of Clinical Pharmacology, 1988, 35, 157-160.	0.8	68
80	Molecular dynamics simulations: from structure function relationships to drug discovery. In Silico Pharmacology, 2014, 2, 4.	1.8	68
81	The Novel UDP Glycosyltransferase 3A2: Cloning, Catalytic Properties, and Tissue Distribution. Molecular Pharmacology, 2011, 79, 472-478.	1.0	67
82	An evaluation of potential mechanism-based inactivation of human drug metabolizing cytochromes P450 by monoamine oxidase inhibitors, including isoniazid. British Journal of Clinical Pharmacology, 2006, 61, 570-584.	1.1	66
83	The Regio- and Stereo-Selectivity of C19 and C21 Hydroxysteroid Clucuronidation by UGT2B7 and UGT2B11. Archives of Biochemistry and Biophysics, 1997, 341, 207-211.	1.4	65
84	Inhibition of human drug-metabolising cytochrome P450 and UDP-glucuronosyltransferase enzyme activities in vitro by uremic toxins. European Journal of Clinical Pharmacology, 2014, 70, 1097-1106.	0.8	65
85	The glucuronidation of hydroxylated metabolites of benzo[î±]pyrene and 2-acetylaminofluorene by cDNA-expressed human UDP-glucuronosyltransferases. Carcinogenesis, 1993, 14, 2637-2639.	1.3	64
86	Inhibition of human UDP-glucuronosyltransferase enzymes by lapatinib, pazopanib, regorafenib and sorafenib: Implications for hyperbilirubinemia. Biochemical Pharmacology, 2017, 129, 85-95.	2.0	64
87	Lidocaine disposition—Sex differences and effects of cimetidine. Clinical Pharmacology and Therapeutics, 1984, 35, 695-701.	2.3	62
88	Multiple Pharmacophores for the Investigation of Human UDP-Glucuronosyltransferase Isoform Substrate Selectivity. Molecular Pharmacology, 2004, 65, 301-308.	1.0	61
89	Caffeine renal clearance and urine caffeine concentrations during steady state dosing. Implications for monitoring caffeine intake during sports events British Journal of Clinical Pharmacology, 1991, 31, 405-408.	1.1	58
90	High-performance liquid chromatographic assay for 4-nitrophenol hydroxylation, a putative cytochrome P-4502E1 activity, in human liver microsomes. Biomedical Applications, 1993, 616, 73-78.	1.7	58

#	Article	IF	CITATIONS
91	Drug Interactions Involving Aspirin (Acetylsalicylic Acid) and Salicylic Acid. Clinical Pharmacokinetics, 1989, 17, 327-344.	1.6	57
92	Towards integrated ADME prediction: past, present and future directions for modelling metabolism by UDP-glucuronosyltransferases. Journal of Molecular Graphics and Modelling, 2004, 22, 507-517.	1.3	57
93	In vitroapproaches to investigate mechanism-based inactivation of CYP enzymes. Expert Opinion on Drug Metabolism and Toxicology, 2007, 3, 321-329.	1.5	57
94	Kinetic Modeling of the Interactions between 4-Methylumbelliferone, 1-Naphthol, and Zidovudine Glucuronidation by UDP-Glucuronosyltransferase 2B7 (UGT2B7) Provides Evidence for Multiple Substrate Binding and Effector Sites. Molecular Pharmacology, 2008, 74, 1152-1162.	1.0	56
95	Aldosterone glucuronidation by human liver and kidney microsomes and recombinant UDPâ€glucuronosyltransferases: Inhibition by NSAIDs. British Journal of Clinical Pharmacology, 2009, 68, 402-412.	1.1	55
96	Morphine Glucuronidation and Glucosidation Represent Complementary Metabolic Pathways That Are Both Catalyzed by UDP-Glucuronosyltransferase 2B7: Kinetic, Inhibition, and Molecular Modeling Studies. Journal of Pharmacology and Experimental Therapeutics, 2014, 349, 126-137.	1.3	55
97	In Vitro Drug Metabolism Using Liver Microsomes. Current Protocols in Pharmacology, 2016, 74, 7.8.1-7.8.24.	4.0	55
98	Kinetic and inhibitor studies of 4-methylumbelliferone and 1-naphthol glucuronidation in human liver microsomes. Biochemical Pharmacology, 1988, 37, 665-671.	2.0	54
99	Pharmacodynamics of oxypurinol after administration of allopurinol to healthy subjects. British Journal of Clinical Pharmacology, 1996, 41, 299-304.	1.1	53
100	Glucuronidation of fenamates: Kinetic studies using human kidney cortical microsomes and recombinant UDP-glucuronosyltransferase (UGT) 1A9 and 2B7. Biochemical Pharmacology, 2007, 73, 1683-1691.	2.0	53
101	Gender and oral contraceptive steroids as determinants of drug glucuronidation: effects on clofibric acid elimination British Journal of Clinical Pharmacology, 1984, 18, 240-243.	1.1	52
102	Relationship between hyperbilirubinaemia and UDP-glucuronosyltransferase 1A1 (UGT1A1) polymorphism in adult HIV-infected Thai patients treated with indinavir. Pharmacogenetics and Genomics, 2006, 16, 321-329.	0.7	52
103	Kinase inhibitor pharmacokinetics: comprehensive summary and roadmap for addressing inter-individual variability in exposure. Expert Opinion on Drug Metabolism and Toxicology, 2017, 13, 31-49.	1.5	52
104	Binding of clozapine to the GABAB receptor: clinical and structural insights. Molecular Psychiatry, 2020, 25, 1910-1919.	4.1	52
105	Torsemide metabolism by CYP2C9 variants and other human CYP2C subfamily enzymes. Pharmacogenetics and Genomics, 2000, 10, 267-270.	5.7	52
106	In vitro evidence for the involvement of at least two forms of human liver UDP-glucuronosyltransferase in morphine 3-glucuronidation. Biochemical Pharmacology, 1988, 37, 2839-2845.	2.0	51
107	Identification of the human cytochromes P450 catalysing the rate-limiting pathways of gliclazide elimination. British Journal of Clinical Pharmacology, 2007, 64, 450-457.	1.1	51
108	Influence of N-Terminal Domain Histidine and Proline Residues on the Substrate Selectivities of Human UDP-Glucuronosyltransferase 1A1, 1A6, 1A9, 2B7, and 2B10. Drug Metabolism and Disposition, 2009, 37, 1948-1955.	1.7	51

#	Article	IF	CITATIONS
109	Critical Roles of Residues 36 and 40 in the Phenol and Tertiary Amine Aglycone Substrate Selectivities of UDP-Glucuronosyltransferases 1A3 and 1A4. Molecular Pharmacology, 2007, 72, 1054-1062.	1.0	50
110	Secondary metabolism of theophylline biotransformation products in man―route of formation of 1â€methyluric acid British Journal of Clinical Pharmacology, 1983, 15, 117-119.	1.1	49
111	Rapid Prediction of Chemical Metabolism by Human UDP-glucuronosyltransferase Isoforms Using Quantum Chemical Descriptors Derived with the Electronegativity Equalization Method. Journal of Medicinal Chemistry, 2004, 47, 5311-5317.	2.9	49
112	The Glucuronidation of Δ4-3-Keto C19- and C21-Hydroxysteroids by Human Liver Microsomal and Recombinant UDP-glucuronosyltransferases (UGTs): 6α- and 21-Hydroxyprogesterone Are Selective Substrates for UGT2B7. Drug Metabolism and Disposition, 2007, 35, 363-370.	1.7	48
113	Tolbutamide hydroxylation in humans: lack of bimodality in 106 healthy subjects. Pharmacogenetics and Genomics, 1993, 3, 86-93.	5.7	45
114	In vitro characterisation of human renal and hepatic frusemide glucuronidation and identification of the UDP-glucuronosyltransferase enzymes involved in this pathway. Biochemical Pharmacology, 2008, 76, 249-257.	2.0	45
115	Allopurinol dosage selection: relationships between dose and plasma oxipurinol and urate concentrations and urinary urate excretion British Journal of Clinical Pharmacology, 1988, 26, 423-428.	1.1	44
116	Amino terminal domains of human UDP-glucuronosyltransferases (UGT) 2B7 and 2B15 associated with substrate selectivity and autoactivation. Biochemical Pharmacology, 2007, 73, 1463-1473.	2.0	43
117	The Glucuronidation of R- and S-Lorazepam: Human Liver Microsomal Kinetics, UDP-Glucuronosyltransferase Enzyme Selectivity, and Inhibition by Drugs. Drug Metabolism and Disposition, 2013, 41, 1273-1284.	1.7	42
118	Scaling factors for the <i>in vitro</i> – <i>in vivo</i> extrapolation (IV–IVE) of renal drug and xenobiotic glucuronidation clearance. British Journal of Clinical Pharmacology, 2016, 81, 1153-1164.	1.1	42
119	Biochemical validation of self-reported caffeine consumption during caffeine fading. Journal of Behavioral Medicine, 1988, 11, 15-30.	1.1	41
120	The effect of sulphinpyrazone on oxidative drug metabolism in man: Inhibition of tolbutamide elimination. European Journal of Clinical Pharmacology, 1982, 22, 321-326.	0.8	40
121	In vitro–in vivo extrapolation of CYP2C8-catalyzed paclitaxel 6α-hydroxylation: effects of albumin on in vitro kinetic parameters and assessment of interindividual variability in predicted clearance. European Journal of Clinical Pharmacology, 2011, 67, 815-824.	0.8	40
122	CIMETIDINE INTERACTION WITH WARFARIN. Lancet, The, 1979, 314, 639.	6.3	39
123	Human Renal Cortical and Medullary UDP-Glucuronosyltransferases (UGTs): Immunohistochemical Localization of UGT2B7 and UGT1A Enzymes and Kinetic Characterization of <i>S</i> Naproxen Glucuronidation. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 422-430.	1.3	39
124	Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition British Journal of Clinical Pharmacology, 1985, 20, 482-485.	1.1	38
125	Characterization of paracetamol UDP-glucuronosyltransferase activity in human liver microsomes. Biochemical Pharmacology, 1990, 40, 595-600.	2.0	38
126	Theophyllineâ€rifampicin interaction: nonâ€selective induction of theophylline metabolic pathways British Journal of Clinical Pharmacology, 1984, 18, 445-448.	1.1	37

#	Article	IF	CITATIONS
127	Non-selective nonsteroidal anti-inflammatory drugs and cardiovascular events: is aldosterone the silent partner in crime?. British Journal of Clinical Pharmacology, 2006, 61, 738-740.	1.1	36
128	Timeâ€dependent inhibition of human drug metabolizing cytochromes P450 by tricyclic antidepressants. British Journal of Clinical Pharmacology, 2008, 65, 87-97.	1.1	36
129	Renal UDP-glucuronosyltransferases and the glucuronidation of xenobiotics and endogenous mediators. Drug Metabolism Reviews, 2010, 42, 63-73.	1.5	36
130	Inhibition of Human UDP-Glucuronosyltransferase Enzymes by Canagliflozin and Dapagliflozin: Implications for Drug-Drug Interactions. Drug Metabolism and Disposition, 2015, 43, 1468-1476.	1.7	36
131	In Vitro Characterization of the Human Liver Microsomal Kinetics and Reaction Phenotyping of Olanzapine Metabolism. Drug Metabolism and Disposition, 2015, 43, 1806-1814.	1.7	36
132	Molecular Modeling Approaches for the Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. Journal of Chemical Information and Modeling, 2006, 46, 2661-2673.	2.5	35
133	The Importance of Local Chemical Structure for Chemical Metabolism by Human Uridine 5†-Diphosphateâ ^ Glucuronosyltransferase. Journal of Chemical Information and Modeling, 2006, 46, 2692-2697.	2.5	35
134	Effect of Albumin on Human Liver Microsomal and Recombinant CYP1A2 Activities: Impact on In Vitro-In Vivo Extrapolation of Drug Clearance. Drug Metabolism and Disposition, 2012, 40, 982-989.	1.7	35
135	Analysis of d-penicillamine in plasma by fluorescence derivatisation with N-[p-(2-benzoxazolyl)-phenyl] maleimide and high-performance liquid chromatography. Biomedical Applications, 1983, 275, 89-96.	1.7	34
136	LIQUID GASTRIC EMPTYING ASSESSED BY DIRECT AND INDIRECT TECHNIQUES: RADIONUCLIDE LABELLED LIQUID EMPTYING COMPARED WITH A SIMPLE PARACETAMOL MARKER METHOD. ANZ Journal of Surgery, 1985, 55, 203-206.	0.3	34
137	Effects of Ketamine on Human UDP-Glucuronosyltransferases In Vitro Predict Potential Drug-Drug Interactions Arising from Ketamine Inhibition of Codeine and Morphine Glucuronidation. Drug Metabolism and Disposition, 2011, 39, 1324-1328.	1.7	34
138	The simultaneous determination of theophylline, theobromine and caffeine in plasma by high performance liquid chromatography. Clinical Biochemistry, 1980, 13, 132-134.	0.8	33
139	Characterization of the Binding of Drugs to Human Intestinal Fatty Acid Binding Protein (IFABP): Potential Role of IFABP as an Alternative to Albumin for in Vitro-in Vivo Extrapolation of Drug Kinetic Parameters. Drug Metabolism and Disposition, 2009, 37, 1395-1403.	1.7	33
140	Selectivity and doseâ€dependency of the inhibitory effect of propranolol on theophylline metabolism in man British Journal of Clinical Pharmacology, 1985, 20, 219-223.	1.1	32
141	Relationship between plasma oxipurinol concentrations and xanthine oxidase activity in volunteers dosed with allopurinol British Journal of Clinical Pharmacology, 1988, 26, 429-434.	1.1	32
142	Cytochrome P450 isoform selectivity in human hepatic theobromine metabolism. British Journal of Clinical Pharmacology, 1999, 47, 299-305.	1.1	31
143	Polymorphic hydroxylation of perhexiline in vitro. British Journal of Clinical Pharmacology, 2003, 55, 635-638.	1.1	31
144	Comparative homology modeling of human cytochrome P4501A1 (CYP1A1) and confirmation of residues involved in 7-ethoxyresorufin O-deethylation by site-directed mutagenesis and enzyme kinetic analysis. Archives of Biochemistry and Biophysics, 2007, 468, 58-69.	1.4	31

#	Article	IF	CITATIONS
145	Nonlinear Metabolic Disposition of Theophylline. Therapeutic Drug Monitoring, 1984, 6, 290-297.	1.0	30
146	Direct characterization of the selectivity of furafylline as an inhibitor of human cytochromes P450 1A1 and 1A2. Pharmacogenetics and Genomics, 1994, 4, 281-284.	5.7	30
147	Evidence for a dual action of sulphinpyrazone on drug metabolism in man: theophyllineâ€sulphinpyrazone interaction British Journal of Clinical Pharmacology, 1983, 15, 567-569.	1.1	29
148	NORMAL METABOLISM OF DEBRISOQUINE AND THEOPHYLLINE IN A SLOW TOLBUTAMIDE METABOLISER. Australian and New Zealand Journal of Medicine, 1985, 15, 348-349.	0.5	29
149	Chapter 31. In Vitro Approaches for the Prediction of Human Drug Metabolism. Annual Reports in Medicinal Chemistry, 1994, 29, 307-316.	0.5	29
150	A SIMPLE HPLC ASSAY FOR URINARY PARACETAMOL METABOLITES AND ITS USE TO CHARACTERIZE THE C3H MOUSE AS A MODEL FOR PARACETAMOL METABOLISM STUDIES. Clinical and Experimental Pharmacology and Physiology, 1984, 11, 209-217.	0.9	28
151	Failure of â€~therapeutic' doses of betaâ€adrenoceptor antagonists to alter the disposition of tolbutamide and lignocaine British Journal of Clinical Pharmacology, 1984, 18, 853-860.	1.1	28
152	Verapamil dispositionâ€effects of sulphinpyrazone and cimetidine British Journal of Clinical Pharmacology, 1985, 19, 385-391.	1.1	28
153	Sulfinpyrazone C-Glucuronidation Is Catalyzed Selectively by Human UDP-Glucuronosyltransferase 1A9. Drug Metabolism and Disposition, 2006, 34, 1950-1953.	1.7	28
154	Identification of Residues That Confer Sugar Selectivity to UDP-Glycosyltransferase 3A (UGT3A) Enzymes. Journal of Biological Chemistry, 2012, 287, 24122-24130.	1.6	28
155	Evidence-based strategies for the characterisation of human drug and chemical glucuronidation in vitro and UDP-glucuronosyltransferase reaction phenotyping. , 2021, 218, 107689.		28
156	Inhibition of human hepatic cytochrome P4502E1 by azole antifungals, CNS-active drugs and nonsteroidal anti-inflammatory agents. Xenobiotica, 1998, 28, 293-301.	0.5	27
157	Inhibition of Morphine Metabolism by Ketamine. Drug Metabolism and Disposition, 2010, 38, 728-731.	1.7	27
158	A pragmatic, phase III, multisite, double-blind, placebo-controlled, parallel-arm, dose increment randomised trial of regular, low-dose extended-release morphine for chronic breathlessness: Breathlessness, Exertion And Morphine Sulfate (BEAMS) study protocol. BMJ Open, 2017, 7, e018100.	0.8	27
159	Multiorgan Immune-Related Adverse Events During Treatment With Atezolizumab. Journal of the National Comprehensive Cancer Network: JNCCN, 2020, 18, 1191-1199.	2.3	27
160	Direct and simultaneous high-performance liquid chromatographic assay for the determination of p-aminobenzoic acid and its conjugates in human urine. Biomedical Applications, 1988, 426, 103-109.	1.7	26
161	The Nonspecific Binding of Tyrosine Kinase Inhibitors to Human Liver Microsomes. Drug Metabolism and Disposition, 2015, 43, 1934-1937.	1.7	26
162	Differential Contribution of Active Site Residues in Substrate Recognition Sites 1 and 5 to Cytochrome P450 2C8 Substrate Selectivity and Regioselectivity. Biochemistry, 2004, 43, 7834-7842.	1.2	25

#	Article	IF	CITATIONS
163	Novel mechanisms of nonsteroidal anti-inflammatory drug-induced renal toxicity. Expert Opinion on Drug Metabolism and Toxicology, 2005, 1, 399-408.	1.5	25
164	Homodimerization of UDP-glucuronosyltransferase 2B7 (UGT2B7) and identification of a putative dimerization domain by protein homology modeling. Biochemical Pharmacology, 2011, 82, 2016-2023.	2.0	25
165	Human UDP-Glucuronosyltransferase (UGT) 2B10: Validation of Cotinine as a Selective Probe Substrate, Inhibition by UGT Enzyme-Selective Inhibitors and Antidepressant and Antipsychotic Drugs, and Structural Determinants of Enzyme Inhibition. Drug Metabolism and Disposition, 2016, 44, 378-388.	1.7	25
166	Inhibition of human UDP-glucuronosyltransferase (UGT) enzymes by kinase inhibitors: Effects of dabrafenib, ibrutinib, nintedanib, trametinib and BIBF 1202. Biochemical Pharmacology, 2019, 169, 113616.	2.0	24
167	The effect of ranitidine on the disposition of lignocaine British Journal of Clinical Pharmacology, 1985, 20, 170-173.	1.1	23
168	Optimizing bacterial expression of catalytically active human cytochromes P450: comparison of CYP2C8 and CYP2C9. Xenobiotica, 2004, 34, 49-60.	0.5	23
169	Characterisation of the Binding of Cationic Amphiphilic Drugs to Phospholipid Bilayers Using Surface Plasmon Resonance. ChemMedChem, 2007, 2, 366-373.	1.6	23
170	Effects of amino acid substitutions at positions 33 and 37 on UDP-glucuronosyltransferase 1A9 (UGT1A9) activity and substrate selectivity. Biochemical Pharmacology, 2012, 84, 1511-1521.	2.0	23
171	Recent Advances in the In Silico Modelling of UDP Glucuronosyltransferase Substrates. Current Drug Metabolism, 2008, 9, 60-69.	0.7	22
172	Interaction of sulphinpyrazone with warfarin. European Journal of Clinical Pharmacology, 1982, 22, 327-331.	0.8	21
173	Selective inhibitory effects of nifedipine and verapamil on oxidative metabolism: effects on theophylline British Journal of Clinical Pharmacology, 1988, 25, 397-400.	1.1	21
174	Insights into the UDP-sugar selectivities of human UDP-glycosyltransferases (UGT): a molecular modeling perspective. Drug Metabolism Reviews, 2015, 47, 335-45.	1.5	21
175	Ranitidine disposition in patients with renal impairment British Journal of Clinical Pharmacology, 1983, 16, 731-734.	1.1	20
176	In silico insights: Chemical and structural characteristics associated with uridine diphosphate-glucuronosyltransferase substrate selectivity. Clinical and Experimental Pharmacology and Physiology, 2003, 30, 836-840.	0.9	20
177	Lateral heterogeneities in supported bilayers from pure and mixed phosphatidylethanolamine demonstrating hydrogen bonding capacity. Biointerphases, 2008, 3, 96-104.	0.6	20
178	High-performance liquid chromatographic assay for human liver microsomal omeprazole metabolism. Biomedical Applications, 1993, 619, 291-297.	1.7	19
179	Metabolic activation of clopidogrel: <i>in vitro</i> data provide conflicting evidence for the contributions of CYP2C19 and PON1. Therapeutic Advances in Drug Safety, 2011, 2, 253-261.	1.0	19
180	The Analysis of Penicillins in Biological Fluids and Pharmaceutical Preparations by High-Performance Liquid Chromatography: A Review. Journal of Liquid Chromatography and Related Technologies, 1985, 8, 2827-2843.	0.9	18

#	Article	IF	CITATIONS
181	CYP2C9 polymorphism: impact on tolbutamide pharmacokinetics and response. Pharmacogenetics and Genomics, 2002, 12, 91-92.	5.7	18
182	Carboxylic Acid Drug-Induced DNA Nicking in HEK293 Cells Expressing Human UDP-Glucuronosyltransferases: Role of Acyl Glucuronide Metabolites and Glycation Pathways. Chemical Research in Toxicology, 2007, 20, 1520-1527.	1.7	18
183	New Uses for Allopurinol. Drugs, 1994, 48, 339-344.	4.9	17
184	Kinetics Membrane Disruption Due to Drug Interactions of Chlorpromazine Hydrochloride. Langmuir, 2009, 25, 1086-1090.	1.6	17
185	AFM study of the interaction of cytochrome P450 2C9 with phospholipid bilayers. Chemistry and Physics of Lipids, 2010, 163, 182-189.	1.5	17
186	Evaluation of felodipine as a potential perpetrator of pharmacokinetic drug-drug interactions. European Journal of Clinical Pharmacology, 2014, 70, 1115-1122.	0.8	17
187	Lack of effect of gender and oral contraceptive steroids on the pharmacokinetics of (R)â€ibuprofen in humans British Journal of Clinical Pharmacology, 1995, 40, 153-156.	1.1	16
188	Evolution of drug metabolism: Hitchhiking the technology bandwagon. Clinical and Experimental Pharmacology and Physiology, 2002, 29, 1040-1044.	0.9	16
189	Assessment of inter-individual variability in predicted phenytoin clearance. European Journal of Clinical Pharmacology, 2009, 65, 1203-1210.	0.8	16
190	In vitro-in vivo extrapolation of zolpidem as a perpetrator of metabolic interactions involving CYP3A. European Journal of Clinical Pharmacology, 2010, 66, 275-283.	0.8	16
191	Application of Homology Modeling to Generate CYP1A1 Mutants with Enhanced Activation of the Cancer Chemotherapeutic Prodrug Dacarbazine. Molecular Pharmacology, 2011, 80, 879-888.	1.0	16
192	Transporter-Mediated Uptake of UDP–Glucuronic Acid by Human Liver Microsomes: Assay Conditions, Kinetics, and Inhibition. Drug Metabolism and Disposition, 2015, 43, 147-153.	1.7	16
193	Slow-, Tight-Binding Inhibition of CYP17A1 by Abiraterone Redefines Its Kinetic Selectivity and Dosing Regimen. Journal of Pharmacology and Experimental Therapeutics, 2020, 374, 438-451.	1.3	16
194	Binding of SEP-363856 within TAAR1 and the 5HT1A receptor: implications for the design of novel antipsychotic drugs. Molecular Psychiatry, 2022, 27, 88-94.	4.1	15
195	Haemodynamic effects of parenteral vs. enteral paracetamol in critically ill patients: a randomised controlled trial. Anaesthesia, 2016, 71, 1153-1162.	1.8	14
196	Warfarin resistance associated with genetic polymorphism of VKORC1. Pharmacogenetics and Genomics, 2016, 26, 44-50.	0.7	13
197	Proton Pump Inhibitors and Survival in Patients With Colorectal Cancer Receiving Fluoropyrimidine-Based Chemotherapy. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 1037-1044.	2.3	13
198	[14] Assays of omeprazole metabolism as a substrate probe for human CYP isoforms. Methods in Enzymology, 1996, 272, 132-139.	0.4	12

#	Article	IF	CITATIONS
199	Nanoscale structure of lipid domain boundaries. Soft Matter, 2010, 6, 2193.	1.2	11
200	A novel approach for the simultaneous quantification of 18 small molecule kinase inhibitors in human plasma: A platform for optimised KI dosing. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2016, 1033-1034, 17-26.	1.2	11
201	Arginine-259 of UGT2B7 Confers UDP-Sugar Selectivity. Molecular Pharmacology, 2020, 98, 710-718.	1.0	11
202	Effect of cimetidine on paracetamol activation in mice. Biochemical Pharmacology, 1984, 33, 1996-1998.	2.0	10
203	Perturbation of paracetamol urinary metabolic ratios by urine flow rate British Journal of Clinical Pharmacology, 1992, 34, 359-362.	1.1	10
204	Limited value of the urinary phenytoin metabolic ratio for the assessment of cytochrome P4502C9 activity in vivo. British Journal of Clinical Pharmacology, 1996, 42, 774-778.	1.1	10
205	A Fragment-Based Approach for the Computational Prediction of the Nonspecific Binding of Drugs to Hepatic Microsomes. Drug Metabolism and Disposition, 2016, 44, 1794-1798.	1.7	10
206	Computational Prediction of the Site(s) of Metabolism and Binding Modes of Protein Kinase Inhibitors Metabolized by CYP3A4. Drug Metabolism and Disposition, 2019, 47, 616-631.	1.7	10
207	Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods in Molecular Biology, 2014, 1113, 203-228.	0.4	10
208	Assessment of the drug inhibitor specificity of the human liver 4-methylumbelliferone UDP-glucuronosyltransferase activity. Biochemical Pharmacology, 1991, 41, 838-841.	2.0	9
209	The In Vitro Characterization of Inhibitory Drug–Drug Interactions Involving UDP-Glucuronosyltransferase. , 2010, , 217-236.		9
210	Spironolactone and Canrenone Inhibit UGT2B7-Catalyzed Human Liver and Kidney Microsomal Aldosterone 18β-Glucuronidation: A Potential Drug Interaction. Drug Metabolism and Disposition, 2010, 38, 1011-1014.	1.7	9
211	Differential disposition of intra-renal generated and preformed glucuronides: studies with 4-methylumbelliferone and 4-methylumbelliferyl glucuronide in the filtering and nonfiltering isolated perfused rat kidney. Journal of Pharmacy and Pharmacology, 2011, 63, 507-514.	1.2	9
212	Advances in drug metabolism and pharmacogenetics research in Australia. Pharmacological Research, 2017, 116, 7-19.	3.1	9
213	Specificity of the inhibitory effect of dextropropoxyphene on oxidative drug metabolism in man: effects on theophylline and tolbutamide disposition British Journal of Clinical Pharmacology, 1987, 23, 772-775.	1.1	8
214	Relationship between vemurafenib plasma concentrations and survival outcomes in patients with advanced melanoma. Cancer Chemotherapy and Pharmacology, 2020, 85, 615-620.	1.1	8
215	Enzyme Kinetics of Uridine Diphosphate Glucuronosyltransferases (UGTs). Methods in Molecular Biology, 2021, 2342, 301-338.	0.4	8
216	Mechanism of formation of 6-amino-5-(<i>N</i> -methylformylamino)-1-methyluracil and 3,7-dimethyluric acid from theobromine in the rat <i>in vitro</i> : involvement of cytochrome P-450 and a cellular thiol. Xenobiotica, 1990, 20, 823-833.	0.5	7

#	Article	IF	CITATIONS
217	1â€Methylxanthine derived from theophylline as an in vivo biochemical probe of allopurinol effect British Journal of Clinical Pharmacology, 1991, 32, 238-241.	1.1	7
218	1-Methylxanthine derived from caffeine as a pharmacodynamic probe of oxypurinol effect. British Journal of Clinical Pharmacology, 1997, 43, 197-200.	1.1	7
219	Macrolide–theophylline interactions: no role for the inhibition of cytochrome P4501A2. British Journal of Clinical Pharmacology, 2008, 66, 898-900.	1.1	7
220	Application of the Fluorescent Probe 1-Anilinonaphthalene-8-Sulfonate to the Measurement of the Nonspecific Binding of Drugs to Human Liver Microsomes. Drug Metabolism and Disposition, 2011, 39, 1711-1717.	1.7	7
221	Mass or molar? Recommendations for reporting concentrations of therapeutic drugs. Medical Journal of Australia, 2013, 198, 368-369.	0.8	7
222	Baculovirus-mediated expression of cytochrome P4502C8 and human NADPH-cytochrome P450 reductase : optimization of protein expression. Xenobiotica, 1998, 28, 137-152.	0.5	6
223	Quality of requests for serum digoxin concentrations: experience from an Australian Regional Health Service. British Journal of Clinical Pharmacology, 2007, 63, 623-627.	1.1	6
224	Characterization of the comparative drug binding to intra- (liver fatty acid binding protein) and extra- (human serum albumin) cellular proteins. Xenobiotica, 2015, 45, 847-857.	0.5	6
225	Effect of concomitant use of antihypertensives and immune check point inhibitors on cancer outcomes. Journal of Hypertension, 2021, 39, 1274-1281.	0.3	6
226	Dynamics of Phospholipid Membrane Growth and Drug-Membrane Interactions Probed by Atomic Force Microscopy. Journal of Scanning Probe Microscopy, 2007, 2, 41-45.	0.0	6
227	Stereospecific High-Performance Liquid Chromatographic Assay for the Enantiomers of Phenylpropanolamine in Human Plasma. Therapeutic Drug Monitoring, 1991, 13, 332-338.	1.0	5
228	Dispositional factors do not contribute to the enantiospecificity of the cardiovascular effects of phenylpropanolamine. Clinical Pharmacology and Therapeutics, 1994, 55, 35-43.	2.3	5
229	Impaired dacarbazine activation and 7-ethoxyresorufin deethylation in vitro by polymorphic variants of CYP1A1 and CYP1A2. Pharmacogenetics and Genomics, 2016, 26, 453-461.	0.7	5
230	Application of Model Informed Precision Dosing to Address the Impact of Pregnancy Stage and CYP2D6 Phenotype on Foetal Morphine Exposure. AAPS Journal, 2021, 23, 15.	2.2	5
231	Inhibitory effects of non-steroidal anti-inflammatory drugs on human liver microsomal morphine glucuronidation: Implications for drug-drug interaction liability. Drug Metabolism and Pharmacokinetics, 2022, 42, 100442.	1.1	5
232	Measurement of Human Cytochrome P4501A2 (CYP1A2) Activity In Vitro. Current Protocols in Toxicology / Editorial Board, Mahin D Maines (editor-in-chief) [et Al], 2006, 27, Unit4.19.	1.1	4
233	Relationships between the adverse effects of drugs and genetic polymorphism in genes encoding drug metabolizing enzymes. British Journal of Clinical Pharmacology, 2007, 63, 380-381.	1.1	4
234	Response to "Zolpidem pharmacokinetics and pharmacodynamics in metabolic interactions involving CYP3A: sex as differentiating factorâ€: European Journal of Clinical Pharmacology, 2010, 66, 957-958.	0.8	4

#	Article	IF	CITATIONS
235	Identification of the caffeine to trimethyluric acid ratio as a dietary biomarker to characterise variability in cytochrome P450 3A activity. European Journal of Clinical Pharmacology, 2019, 75, 1211-1218.	0.8	4
236	Drug and Chemical Glucosidation by Control Supersomes and Membranes from <i>Spodoptera frugiperda</i> (Sf) 9 Cells: Implications for the Apparent Glucuronidation of Xenobiotics by UDP-glucuronosyltransferase 1A5. Drug Metabolism and Disposition, 2019, 47, 271-278.	1.7	3
237	Generation, Validation, and Application of a P450 Homology Model. Current Topics in Medicinal Chemistry, 2013, 13, 2233-2240.	1.0	3
238	The Synthesis of Diepoxide Analogues of Fumagillin. Australian Journal of Chemistry, 1979, 32, 2473.	0.5	2
239	Radiometric high-performance liquid chromatographic procedure for the determination of theobromine metabolites in microsomal incubations. Biomedical Applications, 1988, 430, 203-206.	1.7	2
240	Authors' reply: Nonselective nonsteroidal anti-inflammatory drugs and increased cardiovascular events: emotional stress could be the explanation. British Journal of Clinical Pharmacology, 2007, 63, 502-502.	1.1	1
241	High resolution chemical mapping of biomimetic membranes by force volume imaging. , 2008, , .		1
242	What's in a name?. British Journal of Clinical Pharmacology, 2011, 71, 785-786.	1.1	1
243	<i>In vitro</i> metabolism of the anti-inflammatory clerodane diterpenoid polyandric acid A and its hydrolysis product by human liver microsomes and recombinant cytochrome P450 and UDP-glucuronosyltransferase enzymes. Xenobiotica, 2017, 47, 461-469.	0.5	1
244	Response to <i>in vitro</i> and physiologicallyâ€based pharmacokinetic assessment of the drug–drug interaction potential of canagliflozin. British Journal of Clinical Pharmacology, 2018, 84, 392-393.	1.1	1
245	Combination of small-molecule kinase inhibitors and irinotecan in cancer clinical trials: efficacy and safety considerations. Translational Cancer Research, 2017, 6, S1613-S1623.	0.4	1
246	Clinical pharmacology of GP53,633—a new non-steroidal anti-inflammatory drug — in patients with rheumatoid arthritis. Agents and Actions, 1984, 15, 424-427.	0.7	0
247	Comparison of Linear and Nonlinear Classification Algorithms for the Prediction of Drug and Chemical Metabolism by Human UDP-Glucuronosyltransferase Isoforms ChemInform, 2004, 35, no.	0.1	0
248	Characterisation of chlorpromazine binding to lipid bilayer membranes. , 2006, , .		0

15