Zhigang Zak Fang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2181873/publications.pdf

Version: 2024-02-01

120 papers	6,182 citations	42 h-index	74163 75 g-index
130	130	130	4817 citing authors
all docs	docs citations	times ranked	

#	Article	IF	CITATIONS
1	A Novel Method for Densification of Titanium Using Hydrogenation-Induced Expansion under Constrained Conditions. Scripta Materialia, 2022, 210, 114432.	5.2	5
2	A high throughput dynamic method for characterizing thermodynamic properties of catalyzed magnesium hydrides by thermogravimetric analysis. Physical Chemistry Chemical Physics, 2021, 23, 15374-15383.	2.8	5
3	Roles of Ti-Based Catalysts on Magnesium Hydride and Its Hydrogen Storage Properties. Inorganics, 2021, 9, 36.	2.7	23
4	A study on the synthesis of coarse TiO2 powder with controlled particle sizes and morphology via hydrolysis. Powder Technology, 2021, 393, 650-658.	4.2	8
5	Analysis of microstructural facet fatigue failure in ultra-fine grained powder metallurgy Ti-6Al-4V produced through hydrogen sintering. International Journal of Fatigue, 2020, 131, 105355.	5.7	12
6	Analysis of the Elevated Temperature Plastic Flow Response of Ti-6Al-4V Produced via the Hydrogen Sintering and Phase Transformation (HSPT) Process. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 3956-3966.	2.2	1
7	Deoxygenation of Ti metal. , 2020, , 181-223.		3
8	Selected processes for Ti production – a cursory review. , 2020, , 351-362.		2
9	Energy consumption of the Kroll and HAMR processes for titanium production. , 2020, , 389-410.		4
10	Effect of air exposure on hydrogen storage properties of catalyzed magnesium hydride. Journal of Power Sources, 2020, 454, 227936.	7.8	36
11	Effects of Process Gas Pressure and Type on Oxygen Content in Sintered Titanium Produced using Jet-Milled Titanium Hydride Powders. Jom, 2020, 72, 1286-1291.	1.9	1
12	Hydrogen assisted magnesiothermic reduction (HAMR) of TiO2 to produce titanium metal powder. , 2020, , 165-179.		2
13	Deoxygenation of Ti metal: A review of processes in literature. International Journal of Refractory Metals and Hard Materials, 2020, 91, 105270.	3.8	17
14	The effect of Ni doping on the mechanical behavior of tungsten. International Journal of Refractory Metals and Hard Materials, 2020, 92, 105281.	3.8	7
15	The uses and applications of hydrogen processing for titanium additive manufacturing. MATEC Web of Conferences, 2020, 321, 03003.	0.2	1
16	Manipulation of microstructure and mechanical properties during dehydrogenation of hydrogen-sintered Ti–6Al–4V. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 764, 138244.	5 . 6	9
17	Amorphous TiCu-Based Additives for Improving Hydrogen Storage Properties of Magnesium Hydride. ACS Applied Materials & Diterfaces, 2019, 11, 38868-38879.	8.0	54
18	Isothermal hydrogenation kinetics of ball-milled nano-catalyzed magnesium hydride. Materialia, 2019, 5, 100227.	2.7	21

#	Article	IF	CITATIONS
19	Potentially More Ecofriendly Chemical Pathway for Production of High-Purity TiO ₂ from Titanium Slag. ACS Sustainable Chemistry and Engineering, 2019, 7, 4821-4830.	6.7	23
20	Capturing low-pressure hydrogen using V Ti Cr catalyzed magnesium hydride. Journal of Power Sources, 2019, 413, 139-147.	7.8	21
21	An investigation of the reduction of TiO2 by Mg in H2 atmosphere. Chemical Engineering Science, 2019, 195, 484-493.	3.8	12
22	An investigation of the microstructure and ductility of annealed cold-rolled tungsten. Acta Materialia, 2019, 162, 202-213.	7.9	69
23	Novel Method for Making Biomedical Segregation-Free Ti-30Ta Alloy Spherical Powder for Additive Manufacturing. Jom, 2018, 70, 364-369.	1.9	10
24	Gaseous isostatic forging: Design and application to powder metallurgy Ti-6Al-4V. Journal of Materials Processing Technology, 2018, 259, 292-304.	6.3	4
25	Powder metallurgy of titanium – past, present, and future. International Materials Reviews, 2018, 63, 407-459.	19.3	339
26	The Effects of Molybdenum Additions on the Sintering and Mechanical Behavior of Ultrafine-Grained Tungsten. Jom, 2018, 70, 2567-2573.	1.9	13
27	Mitigation of the Surface Oxidation of Titanium by Hydrogen. Journal of Physical Chemistry C, 2018, 122, 20691-20700.	3.1	15
28	Mechanisms of Hydrogen-Assisted Magnesiothermic Reduction of TiO2. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science, 2018, 49, 2998-3006.	2.1	14
29	Hydrogen enhanced thermodynamic properties and kinetics of calciothermic deoxygenation of titanium-oxygen solid solutions. International Journal of Hydrogen Energy, 2018, 43, 11939-11951.	7.1	30
30	The effects of microstructure and porosity on the competing fatigue failure mechanisms in powder metallurgy Ti-6Al-4V. International Journal of Fatigue, 2018, 116, 584-591.	5.7	39
31	The effect of molten salt on oxygenÂremoval from titanium and its alloys using calcium. Journal of Materials Science, 2017, 52, 4120-4128.	3.7	47
32	Kinetically enhanced metallothermic redox of TiO2 by Mg in molten salt. Chemical Engineering Journal, 2017, 327, 169-182.	12.7	22
33	Hydrogen-enabled microstructure and fatigue strength engineering of titanium alloys. Scientific Reports, 2017, 7, 41444.	3.3	48
34	A study on the sintering of ultrafine grained tungsten with Ti-based additives. International Journal of Refractory Metals and Hard Materials, 2017, 65, 2-8.	3.8	22
35	Review of the Methods for Production of Spherical Ti and Ti Alloy Powder. Jom, 2017, 69, 1853-1860.	1.9	169
36	Microstructure and Mechanical Properties of Ti-6Al-4V Fabricated by Selective Laser Melting of Powder Produced by Granulation-Sintering-Deoxygenation Method. Jom, 2017, 69, 2731-2737.	1.9	9

#	Article	IF	Citations
37	Removal of silicon from highly acidic HCl medium to produce purified TiO2. Hydrometallurgy, 2017, 173, 218-223.	4.3	10
38	A Perspective on Thermochemical and Electrochemical Processes for Titanium Metal Production. Jom, 2017, 69, 1861-1868.	1.9	27
39	Hydrogen assisted magnesiothermic reduction of TiO2. Chemical Engineering Journal, 2017, 308, 299-310.	12.7	84
40	Coarsening, densification, and grain growth during sintering of nano-sized powdersâ€"A perspective. International Journal of Refractory Metals and Hard Materials, 2017, 62, 110-117.	3.8	95
41	Hydrogen Assisted Magnesiothermic Reduction (HAMR) of Commercial TiO ₂ to Produce Titanium Powder with Controlled Morphology and Particle Size. Materials Transactions, 2017, 58, 355-360.	1.2	42
42	Automated 3D EDS Acquisition for Spatially Resolved Elemental Characterization of Catalyzed MgH2 Nanostructures. Microscopy and Microanalysis, 2016, 22, 276-277.	0.4	2
43	Thermodynamic Destabilization of Ti-O Solid Solution by H ₂ and Deoxygenation of Ti Using Mg. Journal of the American Chemical Society, 2016, 138, 6916-6919.	13.7	65
44	The study on low temperature sintering of nano-tungsten powders. International Journal of Refractory Metals and Hard Materials, 2016, 61, 273-278.	3.8	59
45	The Effects of Atmosphere on the Sintering of Ultrafine-Grained Tungsten with Ti. Jom, 2016, 68, 2864-2868.	1.9	6
46	The Nature of Tensile Ductility as Controlled by Extreme-Sized Pores in Powder Metallurgy Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2150-2161.	2.2	27
47	A novel method for production of spherical Ti-6Al-4V powder for additive manufacturing. Powder Technology, 2016, 301, 331-335.	4.2	99
48	New Powder Metallurgical Approach to Achieve High Fatigue Strength in Ti-6Al-4V Alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2016, 47, 2335-2345.	2.2	37
49	A lithium–oxygen battery based on lithium superoxide. Nature, 2016, 529, 377-382.	27.8	633
50	A novel chemical pathway for energy efficient production of Ti metal from upgraded titanium slag. Chemical Engineering Journal, 2016, 286, 517-527.	12.7	77
51	Metal Hydrides for High-Temperature Power Generation. Energies, 2015, 8, 8406-8430.	3.1	65
52	Hydrogen sintering of titanium and its alloys. , 2015, , 163-182.		11
53	Phase Transformations and Formation of Ultra-Fine Microstructure During Hydrogen Sintering and Phase Transformation (HSPT) Processing of Ti-6Al-4V. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46, 5546-5560.	2.2	34
54	Understanding competing fatigue mechanisms in powder metallurgy Ti–6Al–4V alloy: Role of crack initiation and duality of fatigue response. Materials Science & Description and Structural Materials: Properties, Microstructure and Processing, 2015, 630, 139-145.	5.6	42

#	Article	IF	Citations
55	A powder metallurgy method for manufacturing Ti-6Al-4V with wrought-like microstructures and mechanical properties via hydrogen sintering and phase transformation (HSPT). Scripta Materialia, 2015, 107, 103-106.	5.2	82
56	The relationship between the green density and as-sintered density of nano-tungsten compacts. International Journal of Refractory Metals and Hard Materials, 2015, 53, 134-138.	3.8	24
57	Detection of Fluorite-Structured MgD2/TiD2: Deuterium NMR. Journal of Physical Chemistry C, 2015, 119, 7656-7661.	3.1	3
58	Metal hydrides based high energy density thermal battery. Journal of Alloys and Compounds, 2015, 645, S184-S189.	5.5	44
59	Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part I: Kinetic Analysis. Journal of Physical Chemistry C, 2015, 119, 22261-22271.	3.1	42
60	Stability of Catalyzed Magnesium Hydride Nanocrystalline During Hydrogen Cycling. Part II: Microstructure Evolution. Journal of Physical Chemistry C, 2015, 119, 22272-22280.	3.1	25
61	Optimization of electrocatalytic properties of NiMoCo foam electrode for water electrolysis by post-treatment processing. Rare Metals, 2015, 34, 802-807.	7.1	11
62	Life cycle assessment comparison of emerging and traditional Titanium dioxide manufacturing processes. Journal of Cleaner Production, 2015, 89, 137-147.	9.3	84
63	An experimental survey of additives for improving dehydrogenation properties of magnesium hydride. Journal of Power Sources, 2015, 278, 38-42.	7.8	42
64	An experimental study of the (Ti–6Al–4V)–xH phase diagram using in situ synchrotron XRD and TGA/DSC techniques. Acta Materialia, 2015, 84, 29-41.	7.9	78
65	Cemented Tungsten Carbide Hardmetal-An Introduction. , 2014, , 123-137.		19
66	Hydrogen Storage Properties of Magnesium Hydride with V-Based Additives. Journal of Physical Chemistry C, 2014, 118, 21778-21784.	3.1	34
67	Kinetics of isothermal hydrogenation of magnesium with TiH2 additive. International Journal of Hydrogen Energy, 2014, 39, 7373-7381.	7.1	31
68	Thermodynamic Destabilization of Magnesium Hydride Using Mg-Based Solid Solution Alloys. Journal of Physical Chemistry C, 2014, 118, 11526-11535.	3.1	55
69	A Comparison of Hydrogen Sintering and Phase Transformation (<scp>HSPT</scp>) Processing with Vacuum Sintering of <scp>CP</scp> â€ <scp>T</scp> i. Advanced Engineering Materials, 2013, 15, 1007-1013.	3.5	15
70	The Formation of Twins in Al-10Zn-3Mg-1.8Cu Alloy by Cryomilling. Jom, 2013, 65, 967-972.	1.9	0
71	A New, Energy-Efficient Chemical Pathway for Extracting Ti Metal from Ti Minerals. Journal of the American Chemical Society, 2013, 135, 18248-18251.	13.7	51
72	A review of liquid phase migration and methods for fabrication of functionally graded cemented tungsten carbide. International Journal of Refractory Metals and Hard Materials, 2013, 36, 2-9.	3.8	82

#	Article	IF	CITATIONS
73	Mechanical properties and wear resistance of functionally graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2013, 36, 46-51.	3.8	61
74	FE-EPMA measurements of compositional gradients in cemented tungsten carbides. International Journal of Refractory Metals and Hard Materials, 2013, 36, 265-270.	3.8	13
75	Effect of Ti Intermetallic Catalysts on Hydrogen Storage Properties of Magnesium Hydride. Journal of Physical Chemistry C, 2013, 117, 12973-12980.	3.1	132
76	A new method for production of titanium dioxide pigment. Hydrometallurgy, 2013, 131-132, 107-113.	4.3	120
77	Mechanically alloyed composite anode materials based on SiO–SnxFeyCz for Li-ion batteries. Journal of Materials Chemistry A, 2013, 1, 4376.	10.3	24
78	Thermodynamic and Kinetic Destabilization of Magnesium Hydride Using Mg–In Solid Solution Alloys. Journal of the American Chemical Society, 2013, 135, 10982-10985.	13.7	103
79	Effects of Li doping on H-diffusion in MgH2: A first-principles study. Journal of Applied Physics, 2013, 114, .	2.5	12
80	An investigation on thermal residual stresses in a cylindrical functionally graded WC–Co component. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 557, 106-112.	5.6	9
81	Hydrogen Sintering of Titanium to Produce High Density Fine Grain Titanium Alloys. Advanced Engineering Materials, 2012, 14, 383-387.	3 . 5	58
82	Titanium for Automotive Applications: Challenges and Opportunities in Materials and Processing. Jom, 2012, 64, 553-565.	1.9	80
83	Kinetic Analysis of Densification Behavior of Nanoâ€sized Tungsten Powder. Journal of the American Ceramic Society, 2012, 95, 2458-2464.	3 . 8	34
84	Reaction Mechanisms in the Li ₃ AlH ₆ /LiBH ₄ and Al/LiBH ₄ Systems for Reversible Hydrogen Storage. Part 2: Solid-State NMR Studies. Journal of Physical Chemistry C, 2011, 115, 6048-6056.	3.1	36
85	Reaction Mechanisms in the Li ₃ AlH ₆ /LiBH ₄ and Al/LiBH ₄ Systems for Reversible Hydrogen Storage. Part 1: H Capacity and Role of Al. Journal of Physical Chemistry C, 2011, 115, 6040-6047.	3.1	21
86	Kinetics of Initial Coarsening During Sintering of Nanosized Powders. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2011, 42, 3534-3542.	2.2	31
87	Kinetics of the formation of metal binder gradient in WC–Co by carbon diffusion induced liquid migration. Acta Materialia, 2011, 59, 4719-4731.	7.9	49
88	Sinter-ability of nanocrystalline tungsten powder. International Journal of Refractory Metals and Hard Materials, 2010, 28, 312-316.	3.8	77
89	Formation of Co-capping during sintering of straight WC–10wt% Co. International Journal of Refractory Metals and Hard Materials, 2010, 28, 317-323.	3.8	24
90	Dependence of microcrack number density on microstructural parameters during plastic deformation of WC–Co composite. International Journal of Refractory Metals and Hard Materials, 2010, 28, 434-440.	3.8	13

#	Article	IF	Citations
91	Low-Temperature Synthesis of Superconducting Nanocrystalline <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mtext>MgB</mml:mtext><mml:mn mathvariant="bold">2</mml:mn></mml:msub></mml:math> . Journal of Nanomaterials, 2010, 2010, 1-5.	2.7	6
92	Hydrogenation of Nanocrystalline Mg at Room Temperature in the Presence of TiH ₂ . Journal of the American Chemical Society, 2010, 132, 6616-6617.	13.7	121
93	Numerical simulation of kinetics of the cobalt gradient change in WC–Co during liquid phase sintering. International Journal of Refractory Metals and Hard Materials, 2009, 27, 37-42.	3.8	8
94	Synthesis, sintering, and mechanical properties of nanocrystalline cemented tungsten carbide – A review. International Journal of Refractory Metals and Hard Materials, 2009, 27, 288-299.	3.8	586
95	Characterization of a bilayer WC–Co hardmetal using Hertzian indentation technique. International Journal of Refractory Metals and Hard Materials, 2009, 27, 317-322.	3.8	12
96	Design of cobalt gradient via controlling carbon content and WC grain size in liquid-phase-sintered WC–Co composite. International Journal of Refractory Metals and Hard Materials, 2009, 27, 256-260.	3.8	39
97	Effects of Liquid-Phase Composition on Its Migration during Liquid-Phase Sintering of Cemented Carbide. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2009, 40, 1995-2006.	2.2	22
98	Chemical vapor synthesis of Mg–Ti nanopowder mixture as a hydrogen storage material. International Journal of Hydrogen Energy, 2009, 34, 7700-7706.	7.1	33
99	Hydrogen Storage Properties of Nanosized MgH ₂ â^'0.1TiH ₂ Prepared by Ultrahigh-Energyâ^'High-Pressure Milling. Journal of the American Chemical Society, 2009, 131, 15843-15852.	13.7	245
100	The effect of heating rate on the reversible hydrogen storage based on reactions of Li3AlH6 with LiNH2. Journal of Power Sources, 2008, 185, 1354-1358.	7.8	8
101	Characterization of quasi-plastic deformation of WC–Co composite using Hertzian indentation technique. International Journal of Refractory Metals and Hard Materials, 2008, 26, 106-114.	3.8	34
102	Effect of WC particle size on Co distribution in liquid-phase-sintered functionally graded WC–Co composite. International Journal of Refractory Metals and Hard Materials, 2008, 26, 98-105.	3.8	49
103	A kinetic model for cobalt gradient formation during liquid phase sintering of functionally graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2008, 26, 91-97.	3.8	46
104	Grain growth during the early stage of sintering of nanosized WC–Co powder. International Journal of Refractory Metals and Hard Materials, 2008, 26, 232-241.	3.8	158
105	Chemical Vapor Synthesis and Characterization of Nanosized WCâ^'Co Composite Powder and Post-treatment. Industrial & Engineering Chemistry Research, 2008, 47, 9384-9388.	3.7	12
106	The Potential of Binary Lithium Magnesium Nitride - LiMgN for Hydrogen Storage Application. Materials Research Society Symposia Proceedings, 2007, 1042, 1.	0.1	0
107	Potential of Binary Lithium Magnesium Nitride for Hydrogen Storage Applications. Journal of Physical Chemistry C, 2007, 111, 12129-12134.	3.1	59
108	Mathematical modeling of liquid phase migration in solid–liquid mixtures: Application to the sintering of functionally graded WC–Co composites. Acta Materialia, 2007, 55, 3111-3119.	7.9	36

#	Article	IF	CITATIONS
109	Kinetics of cobalt gradient formation during the liquid phase sintering of functionally graded WC–Co. International Journal of Refractory Metals and Hard Materials, 2007, 25, 286-292.	3.8	66
110	The chemical vapor synthesis of inorganic nanopowders. Jom, 2007, 59, 44-49.	1.9	72
111	Quasi-Plastic Deformation of WC-Co Composites Loaded with a Spherical Indenter. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2007, 38, 552-561.	2.2	26
112	Synthesis and Characterization of Nanoscaled Cerium (IV) Oxide via a Solid-State Mechanochemical Method. Journal of the American Ceramic Society, 2006, 89, 842-847.	3.8	23
113	An analysis of grain boundaries and grain growth in cemented tungsten carbide using orientation imaging microscopy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 599-607.	2.2	48
114	Microstructural analysis of lead-free solder alloys. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37, 2505-2514.	2.2	13
115	Correlation of transverse rupture strength of WC–Co with hardness. International Journal of Refractory Metals and Hard Materials, 2005, 23, 119-127.	3.8	132
116	Liquid phase sintering of functionally graded WC?Co composites. Scripta Materialia, 2005, 52, 785-791.	5.2	62
117	Quantitative characterization of microstructures of liquid-phase-sintered two-phase materials. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2004, 35, 1881-1888.	2.2	2
118	Titanium and Titanium Alloy via Sintering of TiH ₂ . Key Engineering Materials, 0, 436, 157-163.	0.4	58
119	Pathways to Optimize Performance/Cost Ratio of Powder Metallurgy Titanium – A Perspective. Key Engineering Materials, 0, 520, 15-23.	0.4	35
120	Powder Metallurgy Ti-6Al-4V Alloy with Wrought-Like Microstructure and Mechanical Properties by Hydrogen Sintering. Key Engineering Materials, 0, 704, 3-14.	0.4	3