Zhiping Lai

List of Publications by Citations

Source: https://exaly.com/author-pdf/2181851/zhiping-lai-publications-by-citations.pdf

Version: 2024-04-24

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

149 9,742 44 97 g-index

163 11,302 9.6 6.48 ext. papers ext. citations avg, IF L-index

#	Paper	IF	Citations
149	Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. <i>Chemical Communications</i> , 2011 , 47, 2071-3	5.8	1005
148	Microstructural optimization of a zeolite membrane for organic vapor separation. <i>Science</i> , 2003 , 300, 456-60	33.3	863
147	Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 1412-5	16.4	398
146	Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. <i>Journal of Membrane Science</i> , 2013 , 425-426, 235-242	9.6	340
145	Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. <i>Journal of Membrane Science</i> , 2012 , 390-391, 93-98	9.6	303
144	High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. <i>Journal of Membrane Science</i> , 2015 , 476, 303-310	9.6	301
143	Synthesis of continuous MOF-5 membranes on porous 由lumina substrates. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 296-301	5.3	298
142	Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. <i>CrystEngComm</i> , 2011 , 13, 6937	3.3	295
141	Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. <i>Chemical Communications</i> , 2011 , 47, 10275-7	5.8	273
140	Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. <i>Microporous and Mesoporous Materials</i> , 2009 , 123, 100-106	5.3	262
139	An air-stable copper reagent for nucleophilic trifluoromethylthiolation of aryl halides. <i>Angewandte Chemie - International Edition</i> , 2013 , 52, 1548-52	16.4	261
138	Siliceous ZSM-5 Membranes by Secondary Growth of b-Oriented Seed Layers. <i>Advanced Functional Materials</i> , 2004 , 14, 716-729	15.6	216
137	Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. <i>Journal of Membrane Science</i> , 2010 , 353, 36-40	9.6	214
136	Unravelling surface and interfacial structures of a metal-organic framework by transmission electron microscopy. <i>Nature Materials</i> , 2017 , 16, 532-536	27	207
135	Separation of Xylene Isomer Vapors with Oriented MFI Membranes Made by Seeded Growth. <i>Industrial & Engineering Chemistry Research</i> , 2001 , 40, 544-552	3.9	200
134	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. <i>Journal of the American Chemical Society</i> , 2018 , 140, 14342-14349	16.4	198
133	Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. <i>Journal of Membrane Science</i> , 2011 , 379, 46-51	9.6	168

132	Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. <i>Journal of Membrane Science</i> , 2012 , 421-422, 292-298	9.6	166
131	Metal®rganic Framework-Based Separators for Enhancing Li® Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. <i>ACS Energy Letters</i> , 2017 , 2, 2362-2367	20.1	160
130	A novel anaerobic electrochemical membrane bioreactor (AnEMBR) with conductive hollow-fiber membrane for treatment of low-organic strength solutions. <i>Environmental Science & amp; Technology</i> , 2014 , 48, 12833-41	10.3	151
129	Uniformly a-oriented MFI zeolite films by secondary growth. <i>Angewandte Chemie - International Edition</i> , 2006 , 45, 1154-8	16.4	122
128	Enhanced Reactivities toward Amines by Introducing an Imine Arm to the Pincer Ligand: Direct Coupling of Two Amines To Form an Imine Without Oxidant. <i>Organometallics</i> , 2012 , 31, 5208-5211	3.8	107
127	High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. <i>Nature Nanotechnology</i> , 2018 , 13, 345-350	28.7	106
126	Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. <i>Microporous and Mesoporous Materials</i> , 2001 , 48, 219-228	5.3	96
125	Gas and Organic Vapor Permeation through b-Oriented MFI Membranes. <i>Industrial &</i> Engineering Chemistry Research, 2004 , 43, 3000-3007	3.9	92
124	Enhanced visible-light activity of titania via confinement inside carbon nanotubes. <i>Journal of the American Chemical Society</i> , 2011 , 133, 14896-9	16.4	91
123	MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited LiB battery. <i>Nano Energy</i> , 2019 , 61, 478-485	17.1	85
122	Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. <i>Advanced Functional Materials</i> , 2018 , 28, 1804860	15.6	80
121	Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane BioreactorsEffect of Configuration and Applied Voltage on Performance and Membrane Fouling. <i>Environmental Science & Description (Membrane Fouling)</i>	10.3	77
120	Selective Hydrogen Generation from Formic Acid with Well-Defined Complexes of Ruthenium and Phosphorus-Nitrogen PN(3) -Pincer Ligand. <i>Chemistry - an Asian Journal</i> , 2016 , 11, 1357-60	4.5	77
119	Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. <i>Environmental Science & Environmental Science & Environment</i>	10.3	72
118	Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons. <i>Journal of Membrane Science</i> , 2015 , 493, 88-96	9.6	70
117	Hydrogenation of Esters Catalyzed by Ruthenium PN3-Pincer Complexes Containing an Aminophosphine Arm. <i>Organometallics</i> , 2014 , 33, 4152-4155	3.8	69
116	Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 12295-12299	9.5	65
115	Development of ZIF-8 membranes: opportunities and challenges for commercial applications. <i>Current Opinion in Chemical Engineering</i> , 2018 , 20, 78-85	5.4	64

114	Molecular dynamics simulations on gate opening in ZIF-8: identification of factors for ethane and propane separation. <i>Langmuir</i> , 2013 , 29, 8865-72	4	64
113	Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. <i>Journal of Membrane Science</i> , 2008 , 316, 145-152	9.6	64
112	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li-S Batteries. <i>ACS Nano</i> , 2018 , 12, 836-843	16.7	63
111	Synthesis of coreEhell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 13862	13	60
110	Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO2 using Sporomusa ovata. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 17201-17211	13	57
109	Selective separation of oil and water with mesh membranes by capillarity. <i>Advances in Colloid and Interface Science</i> , 2016 , 235, 46-55	14.3	54
108	ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. <i>Chemical Engineering Science</i> , 2016 , 141, 119-124	4.4	49
107	Sorption Hysteresis of Light Hydrocarbons and Carbon Dioxide in Shale and Kerogen. <i>Scientific Reports</i> , 2017 , 7, 16209	4.9	48
106	Preparation of b-Oriented MFI Films on Porous Stainless Steel Substrates. <i>Industrial & Engineering Chemistry Research</i> , 2005 , 44, 9086-9095	3.9	46
105	Aqueously Cathodic Deposition of ZIF-8 Membranes for Superior Propylene/Propane Separation. <i>Advanced Functional Materials</i> , 2020 , 30, 1907089	15.6	44
104	Diverse catalytic reactivity of a dearomatized PNP*-nickel hydride pincer complex towards CO reduction. <i>Chemical Communications</i> , 2018 , 54, 11395-11398	5.8	43
103	Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture. <i>Microporous and Mesoporous Materials</i> , 2018 , 255, 76-83	5.3	42
102	Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations. <i>Journal of Membrane Science</i> , 2019 , 591, 117348	9.6	40
101	Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and PhosphorusNitrogen PN3Pincer Ligand Containing a Phenanthroline Backbone. <i>ACS Catalysis</i> , 2017 , 7, 4446-4450	13.1	39
100	A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. <i>Chemical Communications</i> , 2015 , 51, 7610-3	5.8	38
99	Conversion of CO2 from air into formate using amines and phosphorus-nitrogen PN3P-Ru(II) pincer complexes. <i>Green Chemistry</i> , 2018 , 20, 4201-4205	10	37
98	Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous AlO Sol-Gel Coating. <i>ACS Omega</i> , 2019 , 4, 13972-13980	3.9	37
97	Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives. <i>Npj 2D Materials and Applications</i> , 2019 , 3,	8.8	37

(2012-2008)

Removal of trivalent chromium contaminant from aqueous media using FAU-type zeolite membranes. <i>Journal of Membrane Science</i> , 2008 , 312, 163-173	9.6	37
Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. <i>Journal of the American Chemical Society</i> , 2020 , 142, 18782-18794	16.4	37
Enabling storage and utilization of low-carbon electricity: power to formic acid. <i>Energy and Environmental Science</i> , 2021 , 14, 1194-1246	35.4	37
Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. <i>Journal of Power Sources</i> , 2013 , 225, 251-256	8.9	36
Analysis of hollow fibre membrane systems for multicomponent gas separation. <i>Chemical Engineering Research and Design</i> , 2013 , 91, 332-347	5.5	36
Uniformly a-Oriented MFI Zeolite Films by Secondary Growth. <i>Angewandte Chemie</i> , 2006 , 118, 1172-117	'6 .6	36
Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. <i>Organic Letters</i> , 2018 , 20, 6430-6435	6.2	36
Strain of MFI crystals in membranes: An in situ synchrotron X-ray study. <i>Microporous and Mesoporous Materials</i> , 2005 , 84, 332-337	5.3	34
A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor. <i>Chemistry - A European Journal</i> , 2012 , 18, 15940-3	4.8	33
Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. <i>Chemical Science</i> , 2020 , 11, 5434-5440	9.4	32
Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. <i>Nature Communications</i> , 2020 , 11, 5323	17.4	32
Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li-S Batteries. <i>ACS Nano</i> , 2020 ,	16.7	31
Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. <i>Advanced Materials</i> , 2017 , 29, 1605826	24	28
Layer-by-Layer Deposition of Barrier and Permselective c-Oriented-MCM-22/Silica Composite Films. <i>Industrial & Engineering Chemistry Research</i> , 2007 , 46, 7096-7106	3.9	28
Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. <i>ChemSusChem</i> , 2018 , 11, 3591-3598	8.3	28
Efficient electrochemical transformation of CO to C/C chemicals on benzimidazole-functionalized copper surfaces. <i>Chemical Communications</i> , 2018 , 54, 11324-11327	5.8	27
Fabrication of highly permeable polyamide membranes with large Leaf-like Burface nanostructures on inorganic supports for organic solvent nanofiltration. <i>Journal of Membrane Science</i> , 2020 , 601, 117932	9.6	26
Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. <i>AICHE Journal</i> , 2012 , 58, 1550-1561	3.6	26
	membranes. Journal of Membrane Science, 2008, 312, 163-173 Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. Journal of the American Chemical Society, 2020, 142, 18782-18794 Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246 Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. Journal of Power Sources, 2013, 225, 251-256 Analysis of hollow fibre membrane systems for multicomponent gas separation. Chemical Engineering Research and Design, 2013, 91, 332-347 Uniformly a-Oriented MFI Zeolite Films by Secondary Growth. Angewandte Chemie, 2006, 118, 1172-117 Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Organic Letters, 2018, 20, 6430-6435 Strain of MFI crystals in membranes: An in situ synchrotron X-ray study. Microporous and Mesoporous Materials, 2005, 84, 332-337 A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor. Chemistry - A European Journal, 2012, 18, 15940-3 Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chemical Science, 2020, 11, 5434-5440 Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nature Communications, 2020, 11, 5323 Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li-S Batteries. ACS Nano, 2020, Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Advanced Materials, 2017, 29, 1605826 Layer-by-Layer Deposition of Barrier and Permselective c-Oriented-MCM-22/Silica Composite Films. Industrial Ramp; Engineering Chemistry Research, 2007, 46, 7096-7106 Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic	membranes. Journal of Membrane Science, 2008, 312, 163-173 Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. Journal of the American Chemical Society, 2020, 142, 18782-18794 Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246 Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel Roam. Journal of Power Sources, 2013, 225, 251-256 Analysis of hollow fibre membrane systems for multicomponent gas separation. Chemical Engineering Research and Design, 2013, 91, 332-347 Uniformly a-Oriented MFI Zeolite Films by Secondary Growth. Angewandte Chemie, 2006, 118, 1172-1176,6 Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Organic Letters, 2018, 20, 6430-6435 Strain of MFI crystals in membranes: An in situ synchrotron X-ray study. Microporous and Mesoporous Materials, 2005, 84, 332-337 A green approach to ethyl acetate: quantitative conversion of ethanol through direct dehydrogenation in a Pd-Ag membrane reactor. Chemistry - A European Journal, 2012, 18, 15940-3 4.8 Pore engineering of ultrathin covalent organic framework membranes for organic solvent transport and marrow molecular sieving. Chemical Science, 2020, 11, 5434-5440 gleetropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nature Communications, 2020, 11, 5323 24 Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li-S Batteries. ACS Nano, 2020. Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Advanced Materials, 2017, 29, 1605826 Layer-by-Layer Deposition of Barrier and Permselective c-Oriented-MCM-22/Silica Composite Films. Industrial & Bamp: Engineering Chemistry Research, 2007, 46, 7096-7106 Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogen

78	Combining simultaneous reflectance and fluorescence imaging with SEM for conclusive identification of polycrystalline features of MFI membranes. <i>Microporous and Mesoporous Materials</i> , 2004 , 76, 29-33	5.3	26
77	Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations. <i>Journal of Catalysis</i> , 2017 , 355, 101-109	7.3	25
76	Graphene oxide Imolybdenum disulfide hybrid membranes for hydrogen separation. <i>Journal of Membrane Science</i> , 2018 , 550, 145-154	9.6	25
75	Room temperature hydrogen generation from hydrolysis of ammoniaBorane over an efficient NiAgPd/C catalyst. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 20031-20037	6.7	25
74	Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. <i>Science Advances</i> , 2019 , 5, eaax6976	14.3	24
73	Preparation of metal oxide/zeolite coreBhell nanostructures. <i>Microporous and Mesoporous Materials</i> , 2009 , 118, 210-217	5.3	23
72	Renewable aromatics from the degradation of polystyrene under mild conditions. <i>Journal of Saudi Chemical Society</i> , 2017 , 21, 983-989	4.3	21
71	Highly stable porous covalent triazinepiperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture. <i>Chemical Engineering Science</i> , 2016 , 145, 21-30	4.4	21
70	Synthesis of highly c-oriented AFI membranes by epitaxial growth. <i>Microporous and Mesoporous Materials</i> , 2009 , 126, 81-86	5.3	21
69	Exfoliation of two-dimensional zeolites in liquid polybutadienes. <i>Chemical Communications</i> , 2017 , 53, 7011-7014	5.8	19
68	Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions. <i>Journal of Membrane Science</i> , 2012 , 405-406, 275-283	9.6	19
67	Preparation of Highly Porous Polymer Membranes with Hierarchical Porous Structures via Spinodal Decomposition of Mixed Solvents with UCST Phase Behavior. <i>ACS Applied Materials & amp; Interfaces,</i> 2018 , 10, 44041-44049	9.5	19
66	A Pseudodearomatized PNP*Ni-H Complex as a Ligand and ENucleophilic Catalyst. <i>Journal of Organic Chemistry</i> , 2018 , 83, 14969-14977	4.2	18
65	Continuous electrical pumping membrane process for seawater lithium mining. <i>Energy and Environmental Science</i> , 2021 , 14, 3152-3159	35.4	18
64	Fabrication and molecular transport studies of highly c-Oriented AFI membranes. <i>Journal of Membrane Science</i> , 2017 , 528, 46-54	9.6	17
63	Zeolitic Imidazolate Framework-Mediated Synthesis of Co3O4 Nanoparticles Encapsulated in N-Doped Graphitic Carbon as an Efficient Catalyst for Selective Oxidation of Hydrocarbons. <i>ACS Applied Nano Materials</i> , 2018 , 1, 4836-4851	5.6	17
62	Covalent Assembly of Two-Dimensional COF-on-MXene Heterostructures Enables Fast Charging Lithium Hosts. <i>Advanced Functional Materials</i> , 2021 , 31, 2101194	15.6	16
61	Chlorine-functionalized keto-enamine-based covalent organic frameworks for CO2 separation and capture. <i>CrystEngComm</i> , 2018 , 20, 7621-7625	3.3	16

(2021-2019)

60	Metal-organic-framework derived Co-Pd bond is preferred over Fe-Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol. <i>Dalton Transactions</i> , 2019 , 48, 8791-8802	4.3	15
59	Electropolymerization growth of an ultrathin, compact, conductive and microporous (UCCM) polycarbazole membrane for high energy LiB batteries. <i>Nano Energy</i> , 2020 , 73, 104769	17.1	15
58	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. <i>Environmental Science & Environmental &</i>	10.3	15
57	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core-Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. <i>ACS Applied Materials & Distriction Reaction</i> , 11, 20752-20761	9.5	14
56	A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture. <i>Separation and Purification Technology</i> , 2016 , 170, 68-77	8.3	14
55	Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. <i>Journal of Membrane Science</i> , 2019 , 577, 176-	183	13
54	One-Pot Synthesis of N-(Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere. <i>Organic Letters</i> , 2015 , 17, 5630-3	6.2	13
53	Membrane Systems Engineering for Post-combustion Carbon Capture. Energy Procedia, 2013, 37, 976-98	85 .3	12
52	Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. <i>Journal of Membrane Science</i> , 2021 , 640, 119802	9.6	12
51	Protection of Lithium Anode by a Highly Porous PVDF Membrane for High-Performance Liß Battery. <i>ACS Applied Energy Materials</i> , 2020 , 3, 2510-2515	6.1	11
50	Selective conversion of polystyrene into renewable chemical feedstock under mild conditions. <i>Waste Management</i> , 2018 , 78, 871-879	8.6	11
49	Adsorption Properties of the SAPO-5 Molecular Sieve. <i>Journal of Chemical & Data</i> , 2010, 55, 3286-3289	2.8	11
48	Diffusion as a function of guest molecule length and functionalization in flexible metal o rganic frameworks. <i>Materials Horizons</i> , 2016 , 3, 355-361	14.4	11
47	Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes. <i>Journal of Membrane Science</i> , 2014 , 472, 272-280	9.6	10
46	Synthesis of NiBiO2/Silicalite-1 CoreBhell Micromembrane Reactors and Their Reaction/Diffusion Performance. <i>Industrial & Discourse Engineering Chemistry Research</i> , 2010 , 49, 12423-12428	3.9	10
45	Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. <i>ACS Nano</i> , 2021 ,	16.7	10
44	Formic Acid to Power towards Low-Carbon Economy. Advanced Energy Materials,2103799	21.8	10
43	High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations. <i>Journal of Membrane Science</i> , 2021 , 629, 119277	9.6	9

42	Observation of high Tc one dimensional superconductivity in 4 angstrom carbon nanotube arrays. <i>AIP Advances</i> , 2017 , 7, 025305	1.5	8
41	Oriented Two-Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. <i>Angewandte Chemie - International Edition</i> , 2021 ,	16.4	8
40	A general Ca-MOM platform with enhanced acid-base stability for enzyme biocatalysis. <i>Chem Catalysis</i> , 2021 , 1, 146-161		8
39	Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor. <i>International Journal of Hydrogen Energy</i> , 2016 , 41, 19081-19097	6.7	8
38	Dual-Function Conductive Copper Hollow Fibers for Microfiltration and Anti-biofouling in Electrochemical Membrane Bioreactors. <i>Frontiers in Chemistry</i> , 2018 , 6, 445	5	8
37	Fixed-Bed Adsorption Separation Of Xylene Isomers over SiO2/Silicallite-1 Core-Shell Adsorbents. <i>Chemical Engineering Research Bulletin</i> , 2013 , 16,	O	7
36	Asymmetric cathode membrane with tunable positive charge networks for highly stable LiB batteries. <i>Energy Storage Materials</i> , 2020 , 25, 33-40	19.4	7
35	The Ionic Liquid-HO Interface: A New Platform for the Synthesis of Highly Crystalline and Molecular Sieving Covalent Organic Framework Membranes. <i>ACS Applied Materials & Discounty of the State of the Synthesis of Highly Crystalline and Molecular Sieving Covalent Organic Framework Membranes. ACS Applied Materials & Discounty of the Synthesis of Highly Crystalline and Molecular Sieving Covalent Organic Framework Membranes. ACS Applied Materials & Discounty Organic Framework Membranes. ACS Applied Membranes. ACS Applied Membranes.</i>	50 ⁷⁷⁵ 36	576
34	Surface-reconstructed Cu electrode via a facile electrochemical anodization-reduction process for low overpotential CO2 reduction. <i>Journal of Saudi Chemical Society</i> , 2017 , 21, 708-712	4.3	6
33	Redox-Triggered Buoyancy and Size Modulation of a Dynamic Covalent Gel. <i>Chemistry of Materials</i> , 2019 , 31, 4148-4155	9.6	6
32	Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor. <i>Journal of Membrane Science</i> , 2016 , 515, 212	2-2:18	6
31	Fabrication of Self-Entangled 3D Carbon Nanotube Networks from Metal®rganic Frameworks for Li-Ion Batteries. <i>ACS Applied Nano Materials</i> , 2018 , 1, 7075-7082	5.6	6
30	Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation <i>Science Advances</i> , 2022 , 8, eabm6741	14.3	6
29	Foldable Solid-state Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks <i>Advanced Materials</i> , 2022 , e2201410	24	6
28	Attainability and minimum energy of multiple-stage cascade membrane systems. <i>Journal of Membrane Science</i> , 2015 , 495, 284-293	9.6	5
27	A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations. <i>Journal of Membrane Science</i> , 2021 , 632, 119349	9.6	5
26	CB Cross-Coupling Reactions Catalyzed by Recyclable Core-Shell Structured Copper/Cu2O Nanowires Under Ligand-Free Conditions. <i>Journal of Molecular and Engineering Materials</i> , 2015 , 03, 154	o o d1	4
25	Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport. <i>Advanced Functional Materials</i> ,2108672	15.6	4

(2022-2020)

24	Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination. <i>Membranes</i> , 2020 , 10,	3.8	4
23	Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions. <i>Chemical Communications</i> , 2021 , 57, 667-670	5.8	4
22	Aqueous Cathodic Deposition: Aqueously Cathodic Deposition of ZIF-8 Membranes for Superior Propylene/Propane Separation (Adv. Funct. Mater. 7/2020). <i>Advanced Functional Materials</i> , 2020 , 30, 2070042	15.6	3
21	Silicalite-1 crystals with modified morphology: HRTEM imaging and synthesis of b-oriented films. <i>Studies in Surface Science and Catalysis</i> , 2004 , 154, 1160-1167	1.8	3
20	Reliable and Novel Approach Based on Thermodynamic Property Estimation of Low to High Salinity Aqueous Sodium Chloride Solutions for Water-Energy Nexus Applications. <i>Industrial & amp; Engineering Chemistry Research</i> , 2020 , 59, 16029-16042	3.9	3
19	Facile Single-Step Fabrication of Robust Superhydrophobic Carbon Nanotube Films on Different Porous Supports. <i>Industrial & Engineering Chemistry Research</i> , 2019 , 58, 2976-2982	3.9	2
18	Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides. <i>Green Synthesis and Catalysis</i> , 2020 , 1, 143-149	9.3	2
17	Exfoliation of surfactant swollen layered MWW zeolites into two-dimensional zeolite nanosheets using telechelic liquid polybutadiene. <i>Microporous and Mesoporous Materials</i> , 2021 , 315, 110883	5.3	2
16	Membrane Technology 2020 , 327-373		1
15	Selective catalytic transformation of polystyrene into ethylbenzene over Fe-Cu-Co/Alumina. <i>Journal of Saudi Chemical Society</i> , 2020 , 24, 345-350	4.3	1
14	Ultrahigh-flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination Using Low-grade Heat <i>Advanced Materials</i> , 2022 , e2109718	24	1
13	Enhancement of critical current density in a superconducting NbSe step junction. <i>Nanoscale</i> , 2020 , 12, 12076-12082	7.7	1
12	Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators. <i>Computer Aided Chemical Engineering</i> , 2016 , 38, 1201-1206	0.6	1
11	A DNA-mimic contact-active functional group for antifouling ultrafiltration membranes. <i>Chemosphere</i> , 2019 , 216, 669-676	8.4	1
10	Peierls-type metal-insulator transition in carbon nanostructures. <i>Carbon</i> , 2021 , 172, 106-111	10.4	1
9	Giant enhancement of superconductivity in arrays of ultrathin gallium and zinc sub-nanowires embedded in zeolite. <i>Materials Today Physics</i> , 2018 , 6, 38-44	8	1
8	Nanoporous polyethersulfone membranes prepared by mixed solvent phase separation method for protein separation. <i>Journal of Membrane Science</i> , 2021 , 635, 119507	9.6	1
7	Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor. <i>Journal of Membrane Science</i> , 2022 , 652, 120497	9.6	1

6	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation 2021 , 1, 100008		1
5	Unsupervised Person Re-identification via Discriminative Exemplar-level and Patch-level Feature Fusion. <i>Journal of Physics: Conference Series</i> , 2020 , 1518, 012023	0.3	0
4	Fructose to Sorbents: Synthesis of Metal®rganic Frameworks Directly from Biomass for Humid Shale Gas Separation. <i>ACS Sustainable Chemistry and Engineering</i> , 2021 , 9, 17310-17318	8.3	O
3	Nerve network-inspired solid polymer electrolytes (NN-SPE) for fast and single-ion lithium conduction. <i>Energy Storage Materials</i> , 2022 , 49, 575-582	19.4	0
2	Selective Conversion of Carbon Dioxide to Formate with High Current Densities. <i>Journal of Molecular and Engineering Materials</i> ,2150001	1.3	
1	Conjugated microporous polymer membranes for chemical separations. <i>Chinese Journal of Chemical Engineering</i> , 2022 , 45, 1-14	3.2	