
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2181851/publications.pdf Version: 2024-02-01

#	Article	lF	CITATIONS
1	Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system. Chemical Communications, 2011, 47, 2071.	2.2	1,330
2	Merocyanine 540 as an optical probe of transmembrane electrical activity in the heart. Science, 2003, 191, 485-487.	6.0	987
3	Enhanced Binding Affinity, Remarkable Selectivity, and High Capacity of CO ₂ by Dual Functionalization of a <i>rht</i> â€Type Metal–Organic Framework. Angewandte Chemie - International Edition, 2012, 51, 1412-1415.	7.2	430
4	Carbon dioxide selective mixed matrix composite membrane containing ZIF-7 nano-fillers. Journal of Membrane Science, 2013, 425-426, 235-242.	4.1	387
5	Effective separation of propylene/propane binary mixtures by ZIF-8 membranes. Journal of Membrane Science, 2012, 390-391, 93-98.	4.1	384
6	Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm, 2011, 13, 6937.	1.3	371
7	High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8. Journal of Membrane Science, 2015, 476, 303-310.	4.1	365
8	Synthesis of continuous MOF-5 membranes on porous α-alumina substrates. Microporous and Mesoporous Materials, 2009, 118, 296-301.	2.2	347
9	Crystalline 2D Covalent Organic Framework Membranes for High-Flux Organic Solvent Nanofiltration. Journal of the American Chemical Society, 2018, 140, 14342-14349.	6.6	313
10	Unravelling surface and interfacial structures of a metal–organic framework by transmission electron microscopy. Nature Materials, 2017, 16, 532-536.	13.3	306
11	Sharp separation of C2/C3 hydrocarbon mixtures by zeolitic imidazolate framework-8 (ZIF-8) membranes synthesized in aqueous solutions. Chemical Communications, 2011, 47, 10275.	2.2	303
12	Fabrication of MOF-5 membranes using microwave-induced rapid seeding and solvothermal secondary growth. Microporous and Mesoporous Materials, 2009, 123, 100-106.	2.2	293
13	An Airâ€Stable Copper Reagent for Nucleophilic Trifluoromethylthiolation of Aryl Halides. Angewandte Chemie - International Edition, 2013, 52, 1548-1552.	7.2	281
14	Siliceous ZSM-5 Membranes by Secondary Growth ofb-Oriented Seed Layers. Advanced Functional Materials, 2004, 14, 716-729.	7.8	240
15	Synthesis and characterization of ZIF-69 membranes and separation for CO2/CO mixture. Journal of Membrane Science, 2010, 353, 36-40.	4.1	239
16	Metal–Organic Framework-Based Separators for Enhancing Li–S Battery Stability: Mechanism of Mitigating Polysulfide Diffusion. ACS Energy Letters, 2017, 2, 2362-2367.	8.8	229
17	Separation of Xylene Isomer Vapors with Oriented MFI Membranes Made by Seeded Growth. Industrial & Engineering Chemistry Research, 2001, 40, 544-552.	1.8	227
18	Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties. Journal of Membrane Science, 2011, 379, 46-51.	4.1	204

#	Article	IF	CITATIONS
19	Synthesis of ceramic hollow fiber supported zeolitic imidazolate framework-8 (ZIF-8) membranes with high hydrogen permeability. Journal of Membrane Science, 2012, 421-422, 292-298.	4.1	187
20	A Novel Anaerobic Electrochemical Membrane Bioreactor (AnEMBR) with Conductive Hollow-fiber Membrane for Treatment of Low-Organic Strength Solutions. Environmental Science & Technology, 2014, 48, 12833-12841.	4.6	183
21	High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nature Nanotechnology, 2018, 13, 345-350.	15.6	157
22	Uniformlya-Oriented MFI Zeolite Films by Secondary Growth. Angewandte Chemie - International Edition, 2006, 45, 1154-1158.	7.2	138
23	MXene based self-assembled cathode and antifouling separator for high-rate and dendrite-inhibited Li–S battery. Nano Energy, 2019, 61, 478-485.	8.2	131
24	Development of ZIF-8 membranes: opportunities and challenges for commercial applications. Current Opinion in Chemical Engineering, 2018, 20, 78-85.	3.8	125
25	Enhanced Reactivities toward Amines by Introducing an Imine Arm to the Pincer Ligand: Direct Coupling of Two Amines To Form an Imine Without Oxidant. Organometallics, 2012, 31, 5208-5211.	1.1	123
26	Porous Hollow Fiber Nickel Electrodes for Effective Supply and Reduction of Carbon Dioxide to Methane through Microbial Electrosynthesis. Advanced Functional Materials, 2018, 28, 1804860.	7.8	122
27	Enabling storage and utilization of low-carbon electricity: power to formic acid. Energy and Environmental Science, 2021, 14, 1194-1246.	15.6	119
28	Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth. Microporous and Mesoporous Materials, 2001, 48, 219-228.	2.2	109
29	Enhanced Visible-Light Activity of Titania via Confinement inside Carbon Nanotubes. Journal of the American Chemical Society, 2011, 133, 14896-14899.	6.6	102
30	Gas and Organic Vapor Permeation through b-Oriented MFI Membranes. Industrial & Engineering Chemistry Research, 2004, 43, 3000-3007.	1.8	101
31	Graphene-Coated Hollow Fiber Membrane as the Cathode in Anaerobic Electrochemical Membrane Bioreactors – Effect of Configuration and Applied Voltage on Performance and Membrane Fouling. Environmental Science & Technology, 2016, 50, 4439-4447.	4.6	100
32	Porous nickel hollow fiber cathodes coated with CNTs for efficient microbial electrosynthesis of acetate from CO ₂ using <i>Sporomusa ovata</i> . Journal of Materials Chemistry A, 2018, 6, 17201-17211.	5.2	100
33	Using UCST Ionic Liquid as a Draw Solute in Forward Osmosis to Treat High-Salinity Water. Environmental Science & Technology, 2016, 50, 1039-1045.	4.6	99
34	Continuous electrical pumping membrane process for seawater lithium mining. Energy and Environmental Science, 2021, 14, 3152-3159.	15.6	98
35	Selective Hydrogen Generation from Formic Acid with Wellâ€Defined Complexes of Ruthenium and Phosphorus–Nitrogen PN ³ â€Pincer Ligand. Chemistry - an Asian Journal, 2016, 11, 1357-1360.	1.7	94
36	Synthesis of Sub-10 nm Two-Dimensional Covalent Organic Thin Film with Sharp Molecular Sieving Nanofiltration. ACS Applied Materials & Interfaces, 2018, 10, 12295-12299.	4.0	94

#	Article	lF	CITATIONS
37	Improved ZIF-8 membrane: Effect of activation procedure and determination of diffusivities of light hydrocarbons. Journal of Membrane Science, 2015, 493, 88-96.	4.1	93
38	Covalent Organic Framework Embedded with Magnetic Nanoparticles for MRI and Chemo-Thermotherapy. Journal of the American Chemical Society, 2020, 142, 18782-18794.	6.6	89
39	Covalent Assembly of Twoâ€Dimensional COFâ€onâ€MXene Heterostructures Enables Fast Charging Lithium Hosts. Advanced Functional Materials, 2021, 31, 2101194.	7.8	83
40	ZIF-8 membranes with improved reproducibility fabricated from sputter-coated ZnO/alumina supports. Chemical Engineering Science, 2016, 141, 119-124.	1.9	82
41	Electropolymerization of robust conjugated microporous polymer membranes for rapid solvent transport and narrow molecular sieving. Nature Communications, 2020, 11, 5323.	5.8	80
42	Pore engineering of ultrathin covalent organic framework membranes for organic solvent nanofiltration and molecular sieving. Chemical Science, 2020, 11, 5434-5440.	3.7	78
43	Aqueously Cathodic Deposition of ZIFâ€8 Membranes for Superior Propylene/Propane Separation. Advanced Functional Materials, 2020, 30, 1907089.	7.8	77
44	Formic Acid to Power towards Lowâ \in Carbon Economy. Advanced Energy Materials, 2022, 12, .	10.2	77
45	Functional Two-Dimensional Coordination Polymeric Layer as a Charge Barrier in Li–S Batteries. ACS Nano, 2018, 12, 836-843.	7.3	76
46	Hydrogenation of Esters Catalyzed by Ruthenium PN ³ -Pincer Complexes Containing an Aminophosphine Arm. Organometallics, 2014, 33, 4152-4155.	1.1	74
47	Molecular Dynamics Simulations on Gate Opening in ZIF-8: Identification of Factors for Ethane and Propane Separation. Langmuir, 2013, 29, 8865-8872.	1.6	73
48	Synthesis of core–shell heterostructured Cu/Cu2O nanowires monitored by in situ XRD as efficient visible-light photocatalysts. Journal of Materials Chemistry A, 2013, 1, 13862.	5.2	71
49	Fabrication and gas separation properties of polybenzimidazole (PBI)/nanoporous silicates hybrid membranes. Journal of Membrane Science, 2008, 316, 145-152.	4.1	70
50	Simultaneous production and functionalization of hexagonal boron nitride nanosheets by solvent-free mechanical exfoliation for superlubricant water-based lubricant additives. Npj 2D Materials and Applications, 2019, 3, .	3.9	68
51	Selective separation of oil and water with mesh membranes by capillarity. Advances in Colloid and Interface Science, 2016, 235, 46-55.	7.0	64
52	Sorption Hysteresis of Light Hydrocarbons and Carbon Dioxide in Shale and Kerogen. Scientific Reports, 2017, 7, 16209.	1.6	63
53	Giant Osmotic Energy Conversion through Vertical-Aligned Ion-Permselective Nanochannels in Covalent Organic Framework Membranes. Journal of the American Chemical Society, 2022, 144, 12400-12409.	6.6	62
54	Porous covalent triazine piperazine polymer (CTPP)/PEBAX mixed matrix membranes for CO2/N2 and CO2/CH4 separations. Journal of Membrane Science, 2019, 591, 117348.	4.1	59

#	Article	IF	CITATIONS
55	Performance and Stability Improvement of Layered NCM Lithium-Ion Batteries at High Voltage by a Microporous Al ₂ O ₃ Sol–Gel Coating. ACS Omega, 2019, 4, 13972-13980.	1.6	57
56	Foldable Solidâ€State Batteries Enabled by Electrolyte Mediation in Covalent Organic Frameworks. Advanced Materials, 2022, 34, e2201410.	11.1	57
57	Diverse catalytic reactivity of a dearomatized PN ³ P*–nickel hydride pincer complex towards CO ₂ reduction. Chemical Communications, 2018, 54, 11395-11398.	2.2	56
58	Electropolymerized Conjugated Microporous Nanoskin Regulating Polysulfide and Electrolyte for High-Energy Li–S Batteries. ACS Nano, 2020, 14, 17163-17173.	7.3	55
59	Facile synthesis of triazine-triphenylamine-based microporous covalent polymer adsorbent for flue gas CO2 capture. Microporous and Mesoporous Materials, 2018, 255, 76-83.	2.2	53
60	Selective Catalytic Hydrogenation of Arenols by a Well-Defined Complex of Ruthenium and Phosphorus–Nitrogen PN ³ –Pincer Ligand Containing a Phenanthroline Backbone. ACS Catalysis, 2017, 7, 4446-4450.	5.5	50
61	Oriented Twoâ€Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie - International Edition, 2022, 61, .	7.2	50
62	Conversion of CO ₂ from air into formate using amines and phosphorus-nitrogen PN ³ P-Ru(<scp>ii</scp>) pincer complexes. Green Chemistry, 2018, 20, 4201-4205.	4.6	49
63	Fabrication of highly permeable polyamide membranes with large "leaf-like―surface nanostructures on inorganic supports for organic solvent nanofiltration. Journal of Membrane Science, 2020, 601, 117932.	4.1	49
64	Preparation ofb-Oriented MFI Films on Porous Stainless Steel Substrates. Industrial & Engineering Chemistry Research, 2005, 44, 9086-9095.	1.8	48
65	Polycrystalline metal-organic framework (MOF) membranes for molecular separations: Engineering prospects and challenges. Journal of Membrane Science, 2021, 640, 119802.	4.1	48
66	Cobalt-Catalyzed Selective Hydrogenation of Nitriles to Secondary Imines. Organic Letters, 2018, 20, 6430-6435.	2.4	46
67	Precise Sub-Angstrom Ion Separation Using Conjugated Microporous Polymer Membranes. ACS Nano, 2021, 15, 11970-11980.	7.3	46
68	Carbon nanotube supported oriented metal organic framework membrane for effective ethylene/ethane separation. Science Advances, 2022, 8, eabm6741.	4.7	46
69	Analysis of hollow fibre membrane systems for multicomponent gas separation. Chemical Engineering Research and Design, 2013, 91, 332-347.	2.7	45
70	A rationally designed amino-borane complex in a metal organic framework: a novel reusable hydrogen storage and size-selective reduction material. Chemical Communications, 2015, 51, 7610-7613.	2.2	44
71	Removal of trivalent chromium contaminant from aqueous media using FAU-type zeolite membranes. Journal of Membrane Science, 2008, 312, 163-173.	4.1	41
72	Layer-dependent supercapacitance of graphene films grown by chemical vapor deposition on nickel foam. Journal of Power Sources, 2013, 225, 251-256.	4.0	41

#	Article	IF	CITATIONS
73	Soluble Polymers with Intrinsic Porosity for Flue Gas Purification and Natural Gas Upgrading. Advanced Materials, 2017, 29, 1605826.	11.1	40
74	Spatially isolated palladium in porous organic polymers by direct knitting for versatile organic transformations. Journal of Catalysis, 2017, 355, 101-109.	3.1	40
75	Efficient electrochemical transformation of CO ₂ to C ₂ /C ₃ chemicals on benzimidazole-functionalized copper surfaces. Chemical Communications, 2018, 54, 11324-11327.	2.2	39
76	Strain of MFI crystals in membranes: An in situ synchrotron X-ray study. Microporous and Mesoporous Materials, 2005, 84, 332-337.	2.2	38
77	Graphene oxide – molybdenum disulfide hybrid membranes for hydrogen separation. Journal of Membrane Science, 2018, 550, 145-154.	4.1	38
78	Preparation of Highly Porous Polymer Membranes with Hierarchical Porous Structures via Spinodal Decomposition of Mixed Solvents with UCST Phase Behavior. ACS Applied Materials & Interfaces, 2018, 10, 44041-44049.	4.0	38
79	Renewable aromatics from the degradation of polystyrene under mild conditions. Journal of Saudi Chemical Society, 2017, 21, 983-989.	2.4	36
80	Singleâ€ S ite Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid. ChemSusChem, 2018, 11, 3591-3598.	3.6	36
81	Cyclodextrin polymer networks decorated with subnanometer metal nanoparticles for high-performance low-temperature catalysis. Science Advances, 2019, 5, eaax6976.	4.7	35
82	Benzothiazole-Linked Metal-Free Covalent Organic Framework Nanostructures for Visible-Light-Driven Photocatalytic Conversion of Phenylboronic Acids to Phenols. ACS Applied Nano Materials, 2021, 4, 11732-11742.	2.4	35
83	Layer-by-Layer Deposition of Barrier and Permselective <i>c</i> -Oriented-MCM-22/Silica Composite Films. Industrial & Engineering Chemistry Research, 2007, 46, 7096-7106.	1.8	33
84	A Green Approach to Ethyl Acetate: Quantitative Conversion of Ethanol through Direct Dehydrogenation in a Pd–Ag Membrane Reactor. Chemistry - A European Journal, 2012, 18, 15940-15943.	1.7	33
85	Modeling and parametric analysis of hollow fiber membrane system for carbon capture from multicomponent flue gas. AICHE Journal, 2012, 58, 1550-1561.	1.8	33
86	Chlorine-functionalized keto-enamine-based covalent organic frameworks for CO ₂ separation and capture. CrystEngComm, 2018, 20, 7621-7625.	1.3	33
87	The Ionic Liquid–H ₂ O Interface: A New Platform for the Synthesis of Highly Crystalline and Molecular Sieving Covalent Organic Framework Membranes. ACS Applied Materials & Interfaces, 2021, 13, 36507-36516.	4.0	31
88	Exfoliation of two-dimensional zeolites in liquid polybutadienes. Chemical Communications, 2017, 53, 7011-7014.	2.2	29
89	Electropolymerization growth of an ultrathin, compact, conductive and microporous (UCCM) polycarbazole membrane for high energy Li–S batteries. Nano Energy, 2020, 73, 104769.	8.2	29
90	Combining simultaneous reflectance and fluorescence imaging with SEM for conclusive identification of polycrystalline features of MFI membranes. Microporous and Mesoporous Materials, 2004, 76, 29-33.	2.2	27

#	Article	IF	CITATIONS
91	Highly stable porous covalent triazine–piperazine linked nanoflower as a feasible adsorbent for flue gas CO2 capture. Chemical Engineering Science, 2016, 145, 21-30.	1.9	27
92	Zeolitic Imidazolate Framework-Mediated Synthesis of Co ₃ O ₄ Nanoparticles Encapsulated in N-Doped Graphitic Carbon as an Efficient Catalyst for Selective Oxidation of Hydrocarbons. ACS Applied Nano Materials, 2018, 1, 4836-4851.	2.4	27
93	High-performance 7-channel monolith supported SSZ-13 membranes for high-pressure CO2/CH4 separations. Journal of Membrane Science, 2021, 629, 119277.	4.1	27
94	Preparation of metal oxide/zeolite core–shell nanostructures. Microporous and Mesoporous Materials, 2009, 118, 210-217.	2.2	26
95	Room temperature hydrogen generation from hydrolysis of ammonia–borane over an efficient NiAgPd/C catalyst. International Journal of Hydrogen Energy, 2014, 39, 20031-20037.	3.8	26
96	Protection of Lithium Anode by a Highly Porous PVDF Membrane for High-Performance Li–S Battery. ACS Applied Energy Materials, 2020, 3, 2510-2515.	2.5	26
97	A general Ca-MOM platform with enhanced acid-base stability for enzyme biocatalysis. Chem Catalysis, 2021, 1, 146-161.	2.9	26
98	Metal–organic-framework derived Co–Pd bond is preferred over Fe–Pd for reductive upgrading of furfural to tetrahydrofurfuryl alcohol. Dalton Transactions, 2019, 48, 8791-8802.	1.6	25
99	A facile approach to synthesize SSZ-13 membranes with ultrahigh N2 permeances for efficient N2/CH4 separations. Journal of Membrane Science, 2021, 632, 119349.	4.1	25
100	An Ultrahighâ€Flux Nanoporous Graphene Membrane for Sustainable Seawater Desalination using Lowâ€Grade Heat. Advanced Materials, 2022, 34, e2109718.	11.1	25
101	Synthesis of highly c-oriented AFI membranes by epitaxial growth. Microporous and Mesoporous Materials, 2009, 126, 81-86.	2.2	24
102	Finger-like voids induced by viscous fingering during phase inversion of alumina/PES/NMP suspensions. Journal of Membrane Science, 2012, 405-406, 275-283.	4.1	24
103	Flexible Ionic Conjugated Microporous Polymer Membranes for Fast and Selective Ion Transport. Advanced Functional Materials, 2022, 32, 2108672.	7.8	22
104	A Pseudodearomatized PN ³ P*Ni–H Complex as a Ligand and σ-Nucleophilic Catalyst. Journal of Organic Chemistry, 2018, 83, 14969-14977.	1.7	21
105	Selective conversion of polystyrene into renewable chemical feedstock under mild conditions. Waste Management, 2018, 78, 871-879.	3.7	21
106	Design and Mechanistic Study of Highly Durable Carbon-Coated Cobalt Diphosphide Core–Shell Nanostructure Electrocatalysts for the Efficient and Stable Oxygen Evolution Reaction. ACS Applied Materials & Interfaces, 2019, 11, 20752-20761.	4.0	20
107	Effect of specific cathode surface area on biofouling in an anaerobic electrochemical membrane bioreactor: Novel insights using high-speed video camera. Journal of Membrane Science, 2019, 577, 176-183.	4.1	20
108	Diffusion as a function of guest molecule length and functionalization in flexible metal–organic frameworks. Materials Horizons, 2016, 3, 355-361.	6.4	19

#	Article	IF	CITATIONS
109	Fabrication and molecular transport studies of highly c-Oriented AFI membranes. Journal of Membrane Science, 2017, 528, 46-54.	4.1	19
110	Osmotic Heat Engine Using Thermally Responsive Ionic Liquids. Environmental Science & Technology, 2017, 51, 9403-9409.	4.6	18
111	One-Pot Synthesis of <i>N</i> -(α-Peroxy)Indole/Carbazole via Chemoselective Three-Component Condensation Reaction in Open Atmosphere. Organic Letters, 2015, 17, 5630-5633.	2.4	16
112	Modelling and sequential simulation of multi-tubular metallic membrane and techno-economics of a hydrogen production process employing thin-layer membrane reactor. International Journal of Hydrogen Energy, 2016, 41, 19081-19097.	3.8	16
113	A highly stable microporous covalent imine network adsorbent for natural gas upgrading and flue gas CO2 capture. Separation and Purification Technology, 2016, 170, 68-77.	3.9	16
114	Membrane Systems Engineering for Post-combustion Carbon Capture. Energy Procedia, 2013, 37, 976-985.	1.8	15
115	Attainability and minimum energy of single-stage membrane and membrane/distillation hybrid processes. Journal of Membrane Science, 2014, 472, 272-280.	4.1	15
116	Redox-Triggered Buoyancy and Size Modulation of a Dynamic Covalent Gel. Chemistry of Materials, 2019, 31, 4148-4155.	3.2	15
117	Nanoporous polyethersulfone membranes prepared by mixed solvent phase separation method for protein separation. Journal of Membrane Science, 2021, 635, 119507.	4.1	15
118	Gas separation performance and physical aging of tubular thin-film composite carbon molecular sieve membranes based on a polyimide of intrinsic microporosity precursor. Journal of Membrane Science, 2022, 652, 120497.	4.1	15
119	Conjugated microporous polymer membranes for light-gated ion transport. Science Advances, 2022, 8,	4.7	15
120	Nerve network-inspired solid polymer electrolytes (NN-SPE) for fast and single-ion lithium conduction. Energy Storage Materials, 2022, 49, 575-582.	9.5	13
121	Adsorption Properties of the SAPO-5 Molecular Sieve. Journal of Chemical & Engineering Data, 2010, 55, 3286-3289.	1.0	12
122	Tuning the Surface Structure of Polyamide Membranes Using Porous Carbon Nitride Nanoparticles for High-Performance Seawater Desalination. Membranes, 2020, 10, 163.	1.4	12
123	Synthesis of Niâ^'SiO ₂ /Silicalite-1 Coreâ^'Shell Micromembrane Reactors and Their Reaction/Diffusion Performance. Industrial & Engineering Chemistry Research, 2010, 49, 12423-12428.	1.8	11
124	Dual-Function Conductive Copper Hollow Fibers for Microfiltration and Anti-biofouling in Electrochemical Membrane Bioreactors. Frontiers in Chemistry, 2018, 6, 445.	1.8	11
125	Observation of high <i>T c</i> one dimensional superconductivity in 4 angstrom carbon nanotube arrays. AIP Advances, 2017, 7, .	0.6	10
126	Fabrication of Self-Entangled 3D Carbon Nanotube Networks from Metal–Organic Frameworks for Li-Ion Batteries. ACS Applied Nano Materials, 2018, 1, 7075-7082.	2.4	10

#	Article	IF	CITATIONS
127	Asymmetric cathode membrane with tunable positive charge networks for highly stable Li–S batteries. Energy Storage Materials, 2020, 25, 33-40.	9.5	10
128	Exfoliation of surfactant swollen layered MWW zeolites into two-dimensional zeolite nanosheets using telechelic liquid polybutadiene. Microporous and Mesoporous Materials, 2021, 315, 110883.	2.2	10
129	Oriented Twoâ€Dimensional Covalent Organic Framework Membranes with High Ion Flux and Smart Gating Nanofluidic Transport. Angewandte Chemie, 2022, 134, .	1.6	10
130	A Two-Dimensional Stacked Metal-Organic Framework for Ultra Highly-Efficient CO2 Sieving. Chemical Engineering Journal, 2022, 449, 137768.	6.6	10
131	Modulation of destructive quantum interference by bridge groups in truxene-based single-molecule junctions. Chemical Communications, 2021, 57, 667-670.	2.2	9
132	Surface-reconstructed Cu electrode via a facile electrochemical anodization-reduction process for low overpotential CO2 reduction. Journal of Saudi Chemical Society, 2017, 21, 708-712.	2.4	8
133	Facile Single-Step Fabrication of Robust Superhydrophobic Carbon Nanotube Films on Different Porous Supports. Industrial & Engineering Chemistry Research, 2019, 58, 2976-2982.	1.8	8
134	Reliable and Novel Approach Based on Thermodynamic Property Estimation of Low to High Salinity Aqueous Sodium Chloride Solutions for Water-Energy Nexus Applications. Industrial & Engineering Chemistry Research, 2020, 59, 16029-16042.	1.8	8
135	Fixed-Bed Adsorption Separation Of Xylene Isomers over SiO2/Silicallite-1 Core-Shell Adsorbents. Chemical Engineering Research Bulletin, 2013, 16, .	0.2	7
136	Attainability and minimum energy of multiple-stage cascade membrane systems. Journal of Membrane Science, 2015, 495, 284-293.	4.1	6
137	Environmentally benign synthesis of amides and ureas via catalytic dehydrogenation coupling of volatile alcohols and amines in a Pd-Ag membrane reactor. Journal of Membrane Science, 2016, 515, 212-218.	4.1	6
138	Tailored pore size and microporosity of covalent organic framework (COF) membranes for improved molecular separation. , 2021, 1, 100008.		6
139	C–S Cross-Coupling Reactions Catalyzed by Recyclable Core-Shell Structured Copper/Cu2O Nanowires Under Ligand-Free Conditions. Journal of Molecular and Engineering Materials, 2015, 03, 1540001.	0.9	5
140	Automated process flowsheet synthesis for membrane processes using genetic algorithm: role of crossover operators. Computer Aided Chemical Engineering, 2016, 38, 1201-1206.	0.3	5
141	Silicalite-1 crystals with modified morphology: HRTEM imaging and synthesis of b-oriented films. Studies in Surface Science and Catalysis, 2004, 154, 1160-1167.	1.5	4
142	Aqueous Cathodic Deposition: Aqueously Cathodic Deposition of ZIFâ€8 Membranes for Superior Propylene/Propane Separation (Adv. Funct. Mater. 7/2020). Advanced Functional Materials, 2020, 30, 2070042.	7.8	4
143	Enhancement of critical current density in a superconducting NbSe ₂ step junction. Nanoscale, 2020, 12, 12076-12082.	2.8	4
144	Fructose to Sorbents: Synthesis of Metal–Organic Frameworks Directly from Biomass for Humid Shale Gas Separation. ACS Sustainable Chemistry and Engineering, 2021, 9, 17310-17318.	3.2	4

#	Article	IF	CITATIONS
145	Mechanistic elucidation of the role of metal oxidation states in nickel mediated electrocatalytic coupling of benzyl halides. Green Synthesis and Catalysis, 2020, 1, 143-149.	3.7	3
146	Conjugated microporous polymer membranes for chemical separations. Chinese Journal of Chemical Engineering, 2022, 45, 1-14.	1.7	3
147	Giant enhancement of superconductivity in arrays of ultrathin gallium and zinc sub-nanowires embedded in zeolite. Materials Today Physics, 2018, 6, 38-44.	2.9	1
148	A DNA-mimic contact-active functional group for antifouling ultrafiltration membranes. Chemosphere, 2019, 216, 669-676.	4.2	1
149	Unsupervised Person Re-identification via Discriminative Exemplar-level and Patch-level Feature Fusion. Journal of Physics: Conference Series, 2020, 1518, 012023.	0.3	1
150	Selective catalytic transformation of polystyrene into ethylbenzene over Fe-Cu-Co/Alumina. Journal of Saudi Chemical Society, 2020, 24, 345-350.	2.4	1
151	Peierls-type metal-insulator transition in carbon nanostructures. Carbon, 2021, 172, 106-111.	5.4	1
152	A Self-Adaptive LSE Wirelength Model for VLSI Global Placement. , 2018, , .	_	0
153	Selective Conversion of Carbon Dioxide to Formate with High Current Densities. Journal of Molecular and Engineering Materials, 0, , 2150001.	0.9	0