David S Holmes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2181634/publications.pdf

Version: 2024-02-01

66343 43889 9,250 136 42 91 citations h-index g-index papers 139 139 139 4097 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	A rapid boiling method for the preparation of bacterial plasmids. Analytical Biochemistry, 1981, 114, 193-197.	2.4	3,577
2	Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics, 2008, 9, 597.	2.8	490
3	Preparation, molecular weight, base composition, and secondary structure of giant nuclear ribonucleic acid. Biochemistry, 1973, 12, 2330-2338.	2.5	406
4	Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. BMC Genomics, 2009, 10, 394.	2.8	309
5	Genomic insights into microbial iron oxidation and iron uptake strategies in extremely acidic environments. Environmental Microbiology, 2012, 14, 1597-1611.	3.8	170
6	Sulfur Metabolism in the Extreme Acidophile Acidithiobacillus Caldus. Frontiers in Microbiology, 2011, 2, 17.	3.5	145
7	Anaerobic Sulfur Metabolism Coupled to Dissimilatory Iron Reduction in the Extremophile Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, 2013, 79, 2172-2181.	3.1	135
8	Biological cyanide destruction mediated by microorganisms. World Journal of Microbiology and Biotechnology, 1995, 11, 257-265.	3.6	115
9	Insights into the iron and sulfur energetic metabolism of Acidithiobacillus ferrooxidans by microarray transcriptome profiling. Hydrometallurgy, 2006, 83, 263-272.	4.3	112
10	Identification of a Gene Cluster for the Formation of Extracellular Polysaccharide Precursors in the Chemolithoautotroph Acidithiobacillus ferrooxidans. Applied and Environmental Microbiology, 2005, 71, 2902-2909.	3.1	109
11	Metal resistance in acidophilic microorganisms and its significance for biotechnologies. Applied Microbiology and Biotechnology, 2014, 98, 8133-8144.	3.6	106
12	Comparative genome analysis of Acidithiobacillus ferrooxidans, A. thiooxidans and A. caldus: Insights into their metabolism and ecophysiology. Hydrometallurgy, 2008, 94, 180-184.	4.3	102
13	Draft Genome Sequence of the Extremely Acidophilic Bacterium (i>Acidithiobacillus caldus (i>ATCC 51756 Reveals Metabolic Versatility in the Genus (i>Acidithiobacillus (i>). Journal of Bacteriology, 2009, 191, 5877-5878.	2.2	83
14	Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Research, 2007, 35, 2153-2166.	14.5	79
15	Second Acyl Homoserine Lactone Production System in the Extreme Acidophile <i>Acidithiobacillus ferrooxidans</i> . Applied and Environmental Microbiology, 2007, 73, 3225-3231.	3.1	78
16	Lessons from the genomes of extremely acidophilic bacteria and archaea with special emphasis on bioleaching microorganisms. Applied Microbiology and Biotechnology, 2010, 88, 605-620.	3.6	78
17	Draft Genome of the Psychrotolerant Acidophile Acidithiobacillus ferrivorans SS3. Journal of Bacteriology, 2011, 193, 4304-4305.	2.2	76
18	Draft Genome Sequence of the Extremely Acidophilic Biomining Bacterium Acidithiobacillus thiooxidans ATCC 19377 Provides Insights into the Evolution of the Acidithiobacillus Genus. Journal of Bacteriology, 2011, 193, 7003-7004.	2.2	75

#	Article	IF	Citations
19	Metagenomic analysis reveals adaptations to a cold-adapted lifestyle in a low-temperature acid mine drainage stream. FEMS Microbiology Ecology, 2015, 91, .	2.7	7 5
20	Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans. BMC Molecular Biology, 2009, 10, 63.	3.0	74
21	Chromosomal RNA: Its Properties. Science, 1972, 177, 72-74.	12.6	72
22	Phenotypic switching of Thiobacillus ferrooxidans. Journal of Bacteriology, 1988, 170, 3915-3923.	2.2	68
23	Architecture and Gene Repertoire of the Flexible Genome of the Extreme Acidophile Acidithiobacillus caldus. PLoS ONE, 2013, 8, e78237.	2.5	68
24	Two families of repeated DNA sequences in Thiobacillus ferrooxidans. Journal of Bacteriology, 1987, 169, 1861-1870.	2.2	67
25	Sequence composition of rat nuclear deoxyribonucleic acid and high molecular weight nuclear ribonucleic acid. Biochemistry, 1974, 13, 841-848.	2.5	66
26	Acidiphilium organovorum sp. nov., an Acidophilic Heterotroph Isolated from a Thiobacillus ferrooxidans Culture. International Journal of Systematic Bacteriology, 1986, 36, 139-144.	2.8	66
27	Differential expression of two bc 1 complexes in the strict acidophilic chemolithoautotrophic bacterium Acidithiobacillus ferrooxidans suggests a model for their respective roles in iron or sulfur oxidation. Microbiology (United Kingdom), 2007, 153, 102-110.	1.8	66
28	Genes and pathways for CO2 fixation in the obligate, chemolithoautotrophic acidophile, Acidithiobacillus ferrooxidans, Carbon fixation in A. ferrooxidans. BMC Microbiology, 2010, 10, 229.	3.3	65
29	Functional analysis of gapped microbial genomes: Amino acid metabolism of Thiobacillus ferrooxidans. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97, 3509-3514.	7.1	62
30	A Lux-like Quorum Sensing System in the Extreme Acidophile Acidithiobacillus ferrooxidans. Biological Research, 2005, 38, 283-97.	3.4	62
31	Genomic and metagenomic challenges and opportunities for bioleaching: a mini-review. Research in Microbiology, 2016, 167, 529-538.	2.1	61
32	Regulation of a Novel <i>Acidithiobacillus caldus</i> Gene Cluster Involved in Metabolism of Reduced Inorganic Sulfur Compounds. Applied and Environmental Microbiology, 2007, 73, 7367-7372.	3.1	57
33	Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy, 2012, 127-128, 162-167.	4.3	57
34	Genomic insights into the iron uptake mechanisms of the biomining microorganism Acidithiobacillus ferrooxidans. Journal of Industrial Microbiology and Biotechnology, 2005, 32, 606-614.	3.0	56
35	The mesokaryote Gyrodiniumcohnii lacks nucleosomes. Biochemical and Biophysical Research Communications, 1979, 88, 1329-1336.	2.1	51
36	Metal resistance or tolerance? Acidophiles confront high metal loads via both abiotic and biotic mechanisms. Frontiers in Microbiology, 2014, 5, 157.	3.5	51

#	Article	IF	CITATIONS
37	Functional Organization of the Mammalian Genome. Cold Spring Harbor Symposia on Quantitative Biology, 1974, 38, 303-310.	1.1	50
38	Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility. BMC Microbiology, 2008, 8, 203.	3.3	50
39	Microarray and bioinformatic analyses suggest models for carbon metabolism in the autotroph Acidithiobacillus ferrooxidans. Hydrometallurgy, 2006, 83, 273-280.	4.3	48
40	Genome Analysis of the Biotechnologically Relevant Acidophilic Iron Oxidising Strain JA12 Indicates Phylogenetic and Metabolic Diversity within the Novel Genus "Ferrovum― PLoS ONE, 2016, 11, e0146832.	2.5	48
41	Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Frontiers in Microbiology, 2016, 7, 2132.	3. 5	48
42	The ferric iron uptake regulator (Fur) from the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (United Kingdom), 2005, 151, 2005-2015.	1.8	46
43	TnpPred: A Web Service for the Robust Prediction of Prokaryotic Transposases. Comparative and Functional Genomics, 2012, 2012, 1-5.	2.0	46
44	Characterization of the <i>petl</i> and <i>res</i> Operons of <i>Acidithiobacillus ferrooxidans</i> Journal of Bacteriology, 2002, 184, 1498-1501.	2.2	45
45	Interspersion of Repetitive and Single-Copy Sequences in Nuclear Ribonucleic Acid of High Molecular Weight. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71, 1108-1112.	7.1	43
46	The relative positions of sea urchin histone genes on the chimeric plasmids pSp2 and pSp17 as studied by electron microscopy. Cell, 1976, 9, 163-169.	28.9	43
47	Comparative genomics begins to unravel the ecophysiology of bioleaching. Hydrometallurgy, 2010, 104, 471-476.	4.3	43
48	Gene Loss and Horizontal Gene Transfer Contributed to the Genome Evolution of the Extreme Acidophile "Ferrovum― Frontiers in Microbiology, 2016, 7, 797.	3.5	42
49	IST2: an insertion sequence from Thiobacillus ferrooxidans Proceedings of the National Academy of Sciences of the United States of America, 1988, 85, 7284-7287.	7.1	41
50	Positions of sea urchin (Strongylocentrotus purpuratus) histone genes relative to restriction endonuclease sites on the chimeric plasmids pSp2 and pSp17. Biochemistry, 1977, 16, 1504-1512.	2.5	40
51	Preparation and Analysis of an Expressed Sequence Tag Library from the Toxic Dinoflagellate Alexandrium catenella. Marine Biotechnology, 2008, 10, 692-700.	2.4	40
52	Sequence and expression of the rusticyanin structural gene from Thiobacillus ferrooxidans ATCC33020 strain. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1998, 1443, 99-112.	2.4	38
53	Genetic and Bioinformatic Insights into Iron and Sulfur Oxidation Mechanisms of Bioleaching Organisms., 2007,, 281-307.		38
54	Aerobic Lineage of the Oxidative Stress Response Protein Rubrerythrin Emerged in an Ancient Microaerobic, (Hyper)Thermophilic Environment. Frontiers in Microbiology, 2016, 7, 1822.	3.5	38

#	Article	IF	CITATIONS
55	ICE <i>Afe</i> 1, an Actively Excising Genetic Element from the Biomining Bacterium <i>Acidithiobacillus ferrooxidans</i> . Journal of Molecular Microbiology and Biotechnology, 2012, 22, 399-407.	1.0	36
56	Aspects of the predicted physiology of Acidithiobacillus ferrooxidans deduced from an analysis of its partial genome sequence. Hydrometallurgy, 2003, 71, 97-105.	4.3	34
57	Role of complementary proteins in autoimmunity: an old idea re-emerges with new twists. Trends in Immunology, 2005, 26, 367-372.	6.8	34
58	Reclassification of †Thiobacillus prosperus†Huber and Stetter 1989 as Acidihalobacter prosperus gen. nov., sp. nov., a member of the family Ectothiorhodospiraceae. International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 3641-3644.	1.7	32
59	Genetic variability of psychrotolerant Acidithiobacillus ferrivorans revealed by (meta)genomic analysis. Research in Microbiology, 2014, 165, 726-734.	2.1	31
60	Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile. Standards in Genomic Sciences, 2016, 11, 19.	1.5	29
61	Cloning of a Thiobacillus ferrooxidans plasmid in Escherichia coli. Journal of Bacteriology, 1984, 157, 324-326.	2.2	28
62	IST1 insertional inactivation of theresBgene: implications for phenotypic switching inThiobacillus ferrooxidans. FEMS Microbiology Letters, 1999, 175, 223-229.	1.8	26
63	Genome-based classification of two halotolerant extreme acidophiles, Acidihalobacter prosperus V6 (=DSM 14174 =JCM 32253) and 'Acidihalobacter ferrooxidans' V8 (=DSM 14175 =JCM 32254) as two new species, Acidihalobacter aeolianus sp. nov. and Acidihalobacter ferrooxydans sp. nov., respectively. International Journal of Systematic and Evolutionary Microbiology, 2019, 69, 1557-1565.	1.7	25
64	Draft Genome Sequence of the Iron-Oxidizing Acidophile Leptospirillum ferriphilum Type Strain DSM 14647. Genome Announcements, $2014, 2, .$	0.8	24
65	Draft Genome Sequence of the Nominated Type Strain of $\hat{a}\in \infty$ <i>Ferrovum myxofaciens</i> , $\hat{a}\in \mathbb{R}$ an Acidophilic, Iron-Oxidizing Betaproteobacterium. Genome Announcements, 2014, 2, .	0.8	24
66	Uncovering the Mechanisms of Halotolerance in the Extremely Acidophilic Members of the Acidihalobacter Genus Through Comparative Genome Analysis. Frontiers in Microbiology, 2019, 10, 155.	3.5	24
67	The use of genetic probes to detect microorganisms in biomining operations. Journal of Industrial Microbiology, 1986, 1, 129-135.	0.9	23
68	Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus. Genes, 2020, 11, 389.	2.4	23
69	Construction and Evaluation of a Self-Luminescent Biosensor. Annals of the New York Academy of Sciences, 1991, 646, 53-60.	3.8	22
70	ISAfe1, an ISL3 Family Insertion Sequence from Acidithiobacillus ferrooxidans ATCC 19859. Journal of Bacteriology, 2001, 183, 4323-4329.	2.2	22
71	Effect of CO2 Concentration on Uptake and Assimilation of Inorganic Carbon in the Extreme Acidophile Acidithiobacillus ferrooxidans. Frontiers in Microbiology, 2019, 10, 603.	3.5	22
72	Sequence composition of rat ascites chromosomal ribonucleic acid. Biochemistry, 1974, 13, 849-855.	2.5	21

#	Article	IF	CITATIONS
73	A 300 kpb Genome Segment, Including a Complete Set of tRNA Genes, is Dispensable for <i>Acidithiobacillus Ferrooxidans</i> . Advanced Materials Research, 0, 71-73, 187-190.	0.3	21
74	Draft genome sequence of Acidithiobacillus thiooxidans CLST isolated from the acidic hypersaline Gorbea salt flat in northern Chile. Standards in Genomic Sciences, 2017, 12, 84.	1.5	20
75	Complete Genome Sequence of Temperate Bacteriophage <i>Aca</i> ML1 from the Extreme Acidophile Acidithiobacillus caldus ATCC 51756. Journal of Virology, 2012, 86, 12452-12453.	3.4	19
76	Identification and Unusual Properties of the Master Regulator FNR in the Extreme Acidophile Acidithiobacillus ferrooxidans. Frontiers in Microbiology, 2019, 10, 1642.	3.5	19
77	Application of the avidin-biotin method of gene enrichment to the isolation of long double-stranded DNA containing specific gene sequences. Nucleic Acids Research, 1977, 4, 2961-2974.	14.5	18
78	Large-Scale, Multi-Genome Analysis of Alternate Open Reading Frames in Bacteria and Archaea. OMICS A Journal of Integrative Biology, 2005, 9, 91-105.	2.0	18
79	Thermophiles like hot T. Trends in Microbiology, 2006, 14, 423-426.	7.7	17
80	Comparative Genomics Begins to Unravel the Ecophysiology of Bioleaching. Advanced Materials Research, 0, 71-73, 143-150.	0.3	17
81	Graphlet Based Metrics for the Comparison of Gene Regulatory Networks. PLoS ONE, 2016, 11, e0163497.	2.5	17
82	Draft genome sequence of the type strain of the sulfur-oxidizing acidophile, Acidithiobacillus albertensis (DSM 14366). Standards in Genomic Sciences, 2017, 12, 77.	1.5	17
83	Molecular dynamics study of the archaeal aquaporin AqpM. BMC Genomics, 2011, 12, S8.	2.8	16
84	Bioinformatic Analyses of Unique (Orphan) Core Genes of the Genus Acidithiobacillus: Functional Inferences and Use As Molecular Probes for Genomic and Metagenomic/Transcriptomic Interrogation. Frontiers in Microbiology, 2016, 7, 2035.	3.5	16
85	SinEx DB: a database for single exon coding sequences in mammalian genomes. Database: the Journal of Biological Databases and Curation, 2016, 2016, baw095.	3.0	16
86	Temporal Dynamics of Genes Involved in Metabolic Pathways of C and N of <i>L. ferriphilum</i> , in the Industrial Bioleaching Process of Escondida Mine, Chile. Advanced Materials Research, 0, 825, 162-165.	0.3	15
87	Draft Genome Sequence of the Iron-Oxidizing, Acidophilic, and Halotolerant "Thiobacillus prosperus― Type Strain DSM 5130. Genome Announcements, 2014, 2, .	0.8	15
88	Development of biosensors for the detection of mercury and copper ions. Environmental Geochemistry and Health, 1994, 16-16, 229-233.	3.4	14
89	Generation and analysis of expressed sequence tags from Botrytis cinerea. Biological Research, 2006, 39, 367-76.	3.4	14
90	C-di-GMP Pathway in Biomining Bacteria. Advanced Materials Research, 0, 71-73, 223-226.	0.3	14

#	Article	IF	Citations
91	Analysis of Gene Expression in Response to Copper Stress in <i>Acidithiobacillus ferrooxidans</i> Strain D2, Isolated from a Copper Bioleaching Operation. Advanced Materials Research, 0, 825, 157-161.	0.3	14
92	Use of x-ray computed tomography to examine microbial desulfurization of lump coal. Energy & amp; Fuels, $1987, 1, 76-79$.	5.1	13
93	Review of International Biohydrometallurgy Symposium, Frankfurt, 2007. Hydrometallurgy, 2008, 92, 69-72.	4.3	13
94	Iron homeostasis strategies in acidophilic iron oxidizers: Studies in Acidithiobacillus and Leptospirillum. Hydrometallurgy, 2008, 94, 175-179.	4.3	13
95	Genome-based classification of Acidihalobacter prosperus F5 (=DSM 105917=JCM 32255) as Acidihalobacter yilgarnensis sp. nov International Journal of Systematic and Evolutionary Microbiology, 2020, 70, 6226-6234.	1.7	13
96	A note on the use of CsCl centrifugation to purify bacterial plasmids prepared by the rapid boiling method. Analytical Biochemistry, 1982, 127, 434.	2.4	12
97	Transposition of IST2 in Thiobacillus ferrooxidans. Molecular Microbiology, 1994, 12, 165-170.	2.5	12
98	Gene Organization and CO ₂ -Responsive Expression of Four <i>cbb</i> Operons in the Biomining Bacterium <i>Acidithiobacillus Ferrooxidans</i> Advanced Materials Research, 2009, 71-73, 207-210.	0.3	12
99	A Large-Scale Genome-Based Survey of Acidophilic Bacteria Suggests That Genome Streamlining Is an Adaption for Life at Low pH. Frontiers in Microbiology, 2022, 13, 803241.	3 . 5	12
100	Multi Locus Sequence Typing scheme for Acidithiobacillus caldus strain evaluation and differentiation. Research in Microbiology, 2014, 165, 735-742.	2.1	11
101	Progress in Acidophile Genomics. , 2016, , 179-198.		11
102	Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Frontiers in Microbiology, 2021, 12, 822229.	3.5	10
103	Rapid purification of bacterial plasmids and coliphage M13 RF without CsCl centrifugation. Analytical Biochemistry, 1982, 127, 428-433.	2.4	9
104	The Use Of Bioinformatics And Genome Biology To Advance Our Understanding Of Bioleaching Microorganisms., 2007,, 221-239.		9
105	Prediction of FNR Regulated Genes and Metabolic Pathways Potentially Involved in Anaerobic Growth of <i>Acidithiobacillus Ferrooxidans</i> . Advanced Materials Research, 0, 71-73, 195-198.	0.3	9
106	AciDB 1.0: a database of acidophilic organisms, their genomic information and associated metadata. Bioinformatics, 2020, 36, 4970-4971.	4.1	9
107	Protein Function in Extremely Acidic Conditions: Molecular Simulations of a Predicted Aquaporin and a Potassium Channel in <i>Acidithiobacillus Ferrooxidans</i> . Advanced Materials Research, 0, 71-73, 211-214.	0.3	8
108	Regulation of Expression of the Petl Operon Involved in Iron Oxidation in the Biomining Bacterium & lt;i>Acidithiobacillus Ferrooxidans. Advanced Materials Research, 0, 71-73, 199-202.	0.3	8

#	Article	IF	CITATIONS
109	AFAL: a web service for profiling amino acids surrounding ligands in proteins. Journal of Computer-Aided Molecular Design, 2014, 28, 1069-1076.	2.9	8
110	Unlocking Survival Mechanisms for Metal and Oxidative Stress in the Extremely Acidophilic, Halotolerant Acidihalobacter Genus. Genes, 2020, 11, 1392.	2.4	8
111	Structure of the chromosomal material in inactive nuclei of chicken red blood cells. Chromosoma, 1980, 79, 159-167.	2.2	7
112	AlterORF: a database of alternate open reading frames. Nucleic Acids Research, 2007, 36, D517-D518.	14.5	7
113	Insights into the Metabolism and Ecophysiology of Three Acidithiobacilli by Comparative Genome Analysis. Advanced Materials Research, 2007, 20-21, 439-442.	0.3	7
114	Mutantelec: An <i>In Silico</i> mutation simulation platform for comparative electrostatic potential profiling of proteins. Journal of Computational Chemistry, 2017, 38, 467-474.	3.3	6
115	Biotechnology in the mining and metal processing industries: challenges and opportunities. Mining, Metallurgy and Exploration, 1988, 5, 49-56.	0.8	5
116	Expression and activity of the Calvin–Benson–Bassham cycle transcriptional regulator CbbR from <i>Acidithiobacillus ferrooxidans</i> i>in <i>Ralstonia eutropha</i> . FEMS Microbiology Letters, 2015, 362, fnv108.	1.8	5
117	Improved ontology for eukaryotic single-exon coding sequences in biological databases. Database: the Journal of Biological Databases and Curation, 2018, 2018, 1-6.	3.0	5
118	Genomic Lessons from Biomining Organisms: Case Study of the <i>Acidithiobacillus</i> Genus. Advanced Materials Research, 2009, 71-73, 215-218.	0.3	4
119	Small Regulatory RNAs in <i>Acidithiobacillus Ferrooxidans</i> : Case Studies of 6S RNA and <i>Frr</i> . Advanced Materials Research, 0, 71-73, 191-194.	0.3	4
120	\hat{l} ±-fur, an antisense RNA gene to fur in the extreme acidophile Acidithiobacillus ferrooxidans. Microbiology (United Kingdom), 2014, 160, 514-524.	1.8	3
121	SinEx DB 2.0 update 2020: database for eukaryotic single-exon coding sequences. Database: the Journal of Biological Databases and Curation, 2021, 2021, .	3.0	3
122	A Large-Scale Multiple Genome Comparison of Acidophilic Archaea (pH â‰\$.0) Extends Our Understanding of Oxidative Stress Responses in Polyextreme Environments. Antioxidants, 2022, 11, 59.	5.1	3
123	Discovery of Small Regulatory RNAs Extends Our Understanding of Gene Regulation in the <i>Acidithiobacillus</i> Genus. Advanced Materials Research, 2007, 20-21, 535-538.	0.3	2
124	Predicted CO/CO ₂ Fixation in <i>Ferroplasma</i> spp. via a Novel Chimaeric Pathway. Advanced Materials Research, 0, 71-73, 219-222.	0.3	2
125	An artifact in studies of gene regulation using \hat{l}^2 -galactosidase reporter gene assays. Analytical Biochemistry, 2012, 421, 333-335.	2.4	2
126	Biorecovery of metals from mining wastes. , 1998, , 517-545.		2

#	Article	IF	CITATIONS
127	Draft Genome Sequence of <i>Firmicutes</i> Strain S ⁰ AB, a Heterotrophic Iron/Sulfur-Oxidizing Extreme Acidophile. Microbiology Resource Announcements, 2022, 11, .	0.6	2
128	The use of agar for gel electrophoresis of DNA. Analytical Biochemistry, 1982, 119, 164-166.	2.4	1
129	Iron Homeostasis Strategies in Acidophilic Iron Oxidizers: Comparative Genomic Analyses. Advanced Materials Research, 2007, 20-21, 531-534.	0.3	1
130	16S rRNA and Multilocus Phylogenetic Analysis of the Iron Oxidizing Acidophiles of the <i>Acidiferrobacteraceae < /i> Family. Solid State Phenomena, 2017, 262, 339-343.</i>	0.3	1
131	An RT-PCR artifact in the characterization of bacterial operons. Electronic Journal of Biotechnology, 2000, 3, .	2.2	1
132	Draft Genome Sequence of the Novel, Moderately Thermophilic, Iron- and Sulfur-Oxidizing Firmicute Strain Y002, Isolated from an Extremely Acidic Geothermal Environment. Microbiology Resource Announcements, 2022, , e0014922.	0.6	1
133	Specific increase of perchloric acid extractable chromosomal proteins during mammalian erythropoiesis. Comparative Biochemistry and Physiology Part B: Comparative Biochemistry, 1981, 69, 303-306.	0.2	O
134	PRELIMINARY GENOMIC AND FUNCTIONAL ANALYSIS OF A CDNA LIBRARY FROM BOTRYTIS CINEREA. Acta Horticulturae, 2008, , 197-202.	0.2	0
135	Predicting the Function of Hypothetical Genes in Genomes of Bioleaching Microorganisms. Advanced Materials Research, 0, 71-73, 203-206.	0.3	0
136	Latin American Genome Initiative, the Creation of a Network and Web Based Resource to Aid and Nurture Genome Biology in Developing Countries. Electronic Journal of Biotechnology, 2002, 5, .	2.2	0