Clemens Brechtelsbauer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2181412/publications.pdf

Version: 2024-02-01

26 papers 541 citations

758635 12 h-index 642321 23 g-index

26 all docs

 $\begin{array}{c} 26 \\ \\ \text{docs citations} \end{array}$

times ranked

26

528 citing authors

#	Article	IF	Citations
1	Evaluation of Spinning Disk Reactor Technology for the Manufacture of Pharmaceuticals. Industrial & Engineering Chemistry Research, 2000, 39, 2175-2182.	1.8	112
2	Monitoring of Multiphase Pharmaceutical Processes Using Electrical Resistance Tomography. Chemical Engineering Research and Design, 2005, 83, 794-805.	2.7	63
3	Evaluation of a Spinning Disc Reactor for Continuous Processing 1. Organic Process Research and Development, 2001, 5, 65-68.	1.3	49
4	Transforming traditional teaching laboratories for effective remote delivery—A review. Education for Chemical Engineers, 2021, 35, 96-104.	2.8	41
5	Application of Process Modelling Tools in the Scale-Up of Pharmaceutical Crystallisation Processes. Organic Process Research and Development, 2004, 8, 998-1008.	1.3	31
6	The discovery laboratory – A student-centred experiential learning practical: Part I – Overview. Education for Chemical Engineers, 2016, 17, 44-53.	2.8	31
7	Reaction Engineering Evaluation and Utilization of Static Mixer Technology for the Synthesis of Pharmaceuticals. Organic Process Research and Development, 2001, 5, 646-651.	1.3	26
8	A framework for hands-on learning in chemical engineering educationâ€"Training students with the end goal in mind. Education for Chemical Engineers, 2019, 28, 25-29.	2.8	23
9	Shape selective methylation of biphenyl within zeolites: An example of transition state selectivity. Applied Catalysis A: General, 1997, 161, 79-92.	2.2	22
10	Advancing experiential learning through participatory design. Education for Chemical Engineers, 2018, 25, 16-21.	2.8	15
11	Measuring Vapor Pressure with an Isoteniscope: A Hands-On Introduction to Thermodynamic Concepts. Journal of Chemical Education, 2016, 93, 920-926.	1.1	14
12	Development of an Electrical Resistance Tomography Reactor for Pharmaceutical Processes. Canadian Journal of Chemical Engineering, 2005, 83, 11-18.	0.9	13
13	Accelerating Students' Learning of Chromatography with an Experiential Module on Process Development and Scaleup. Journal of Chemical Education, 2020, 97, 1001-1007.	1.1	13
14	The discovery laboratory part II: A framework for incubating independent learning. Education for Chemical Engineers, 2020, 31, 29-37.	2.8	12
15	Teaching reaction kinetics with chemiluminescence. Education for Chemical Engineers, 2018, 22, 53-60.	2.8	11
16	Assessing the performance of UK universities in the field of chemical engineering using data envelopment analysis. Education for Chemical Engineers, 2019, 29, 29-41.	2.8	11
17	Are the kids alright? Exploring students' experiences of support mechanisms to enhance wellbeing on an engineering programme in the UK. European Journal of Engineering Education, 2021, 46, 662-677.	1.5	10
18	How to Design Experiential Learning Resources for Independent Learning. Journal of Chemical Education, 2021, 98, 1182-1192.	1.1	10

#	Article	IF	CITATIONS
19	Moving to Timed Remote Assessments: The Impact of COVID-19 on Year End Exams in Chemical Engineering at Imperial College London. Journal of Chemical Education, 2020, 97, 2760-2767.	1.1	9
20	Creating a Confident and Curious Cohort: The Effect of Video-Led Instructions on Teaching First-Year Chemical Engineering Laboratories. Journal of Chemical Education, 2020, 97, 4001-4007.	1.1	7
21	Effectiveness of a large-scale implementation of hybrid labs for experiential learning at Imperial College London. Education for Chemical Engineers, 2022, 39, 58-66.	2.8	7
22	CREATE labs – Student centric hybrid teaching laboratories. Education for Chemical Engineers, 2021, 37, 22-28.	2.8	5
23	Engaging students to shape their own learning: Driving curriculum re-design using a theory of change approach. Education for Chemical Engineers, 2022, 38, 14-21.	2.8	3
24	Transalkylation of biphenyl over zeolites: Optimizing the reaction conditions and kinetic modeling. Chemical Engineering and Technology, 1997, 20, 582-588.	0.9	2
25	1. Catalysis in flow. , 2014, , 3-30.		1
26	Work in Progress: Hearing You Loud and Clear: the Student Voice as a Driver for Curriculum Change in a Chemical Engineering Degree Course. , 0, , .		O