Chaoji Chen

List of Publications by Citations

Source: https://exaly.com/author-pdf/2180848/chaoji-chen-publications-by-citations.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 14,451 119 142 h-index g-index citations papers 18,869 16.7 6.99 150 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
142	Na(+) intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling. <i>Nature Communications</i> , 2015 , 6, 6929	17.4	834
141	Processing bulk natural wood into a high-performance structural material. <i>Nature</i> , 2018 , 554, 224-228	50.4	558
140	All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. <i>Energy and Environmental Science</i> , 2017 , 10, 538-545	35.4	451
139	Highly Flexible and Efficient Solar Steam Generation Device. Advanced Materials, 2017, 29, 1701756	24	424
138	Challenges and Opportunities for Solar Evaporation. <i>Joule</i> , 2019 , 3, 683-718	27.8	420
137	A radiative cooling structural material. <i>Science</i> , 2019 , 364, 760-763	33.3	419
136	3D-Printed, All-in-One Evaporator for High-Efficiency Solar Steam Generation under 1 Sun Illumination. <i>Advanced Materials</i> , 2017 , 29, 1700981	24	387
135	A Hierarchical N/S-Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for High-Performance Sodium-Ion Batteries. <i>Advanced Energy Materials</i> , 2016 , 6, 1501929	21.8	378
134	A High-Performance Self-Regenerating Solar Evaporator for Continuous Water Desalination. <i>Advanced Materials</i> , 2019 , 31, e1900498	24	336
133	High-capacity, low-tortuosity, and channel-guided lithium metal anode. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, 3584-3589	11.5	331
132	Nitrogen-rich hard carbon as a highly durable anode for high-power potassium-ion batteries. <i>Energy Storage Materials</i> , 2017 , 8, 161-168	19.4	316
131	Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. <i>Energy and Environmental Science</i> , 2019 , 12, 1558-1567	35.4	269
130	Muscle-Inspired Highly Anisotropic, Strong, Ion-Conductive Hydrogels. <i>Advanced Materials</i> , 2018 , 30, e1801934	24	257
129	Scalable and Highly Efficient Mesoporous Wood-Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport. <i>Advanced Functional Materials</i> , 2018 , 28, 1707134	15.6	254
128	Flexible membranes of MoS2/C nanofibers by electrospinning as binder-free anodes for high-performance sodium-ion batteries. <i>Scientific Reports</i> , 2015 , 5, 9254	4.9	235
127	Lightweight, Mesoporous, and Highly Absorptive All-Nanofiber Aerogel for Efficient Solar Steam Generation. <i>ACS Applied Materials & Samp; Interfaces</i> , 2018 , 10, 1104-1112	9.5	227
126	Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. <i>Nano Energy</i> , 2017 , 41, 201-209	17.1	226

(2016-2019)

125	Thick Electrode Batteries: Principles, Opportunities, and Challenges. <i>Advanced Energy Materials</i> , 2019 , 9, 1901457	21.8	221
124	Structurefiropertyfunction relationships of natural and engineered wood. <i>Nature Reviews Materials</i> , 2020 , 5, 642-666	73.3	220
123	Highly Compressible, Anisotropic Aerogel with Aligned Cellulose Nanofibers. ACS Nano, 2018, 12, 140-14	47 6.7	215
122	Developing fibrillated cellulose as a sustainable technological material. <i>Nature</i> , 2021 , 590, 47-56	50.4	213
121	Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose. <i>Science Advances</i> , 2018 , 4, eaar3724	14.3	204
120	Encapsulation of Metallic Na in an Electrically Conductive Host with Porous Channels as a Highly Stable Na Metal Anode. <i>Nano Letters</i> , 2017 , 17, 3792-3797	11.5	191
119	3D-Printed All-Fiber Li-Ion Battery toward Wearable Energy Storage. <i>Advanced Functional Materials</i> , 2017 , 27, 1703140	15.6	184
118	High-Performance Solar Steam Device with Layered Channels: Artificial Tree with a Reversed Design. <i>Advanced Energy Materials</i> , 2018 , 8, 1701616	21.8	174
117	Scalable and Sustainable Approach toward Highly Compressible, Anisotropic, Lamellar Carbon Sponge. <i>CheM</i> , 2018 , 4, 544-554	16.2	167
116	Three-Dimensional Printed Thermal Regulation Textiles. ACS Nano, 2017, 11, 11513-11520	16.7	165
115	Flexible and Binder-Free Electrodes of Sb/rGO and Na3V2(PO4)3/rGO Nanocomposites for Sodium-Ion Batteries. <i>Small</i> , 2015 , 11, 3822-9	11	164
114	Highly Conductive, Lightweight, Low-Tortuosity Carbon Frameworks as Ultrathick 3D Current Collectors. <i>Advanced Energy Materials</i> , 2017 , 7, 1700595	21.8	156
113	3D Wettable Framework for Dendrite-Free Alkali Metal Anodes. Advanced Energy Materials, 2018 , 8, 180	0 06.3 5	155
112	Nanocellulose toward Advanced Energy Storage Devices: Structure and Electrochemistry. <i>Accounts of Chemical Research</i> , 2018 , 51, 3154-3165	24.3	152
111	Highly porous Li 4 Ti 5 O 12 /C nanofibers for ultrafast electrochemical energy storage. <i>Nano Energy</i> , 2014 , 10, 163-171	17.1	150
110	High Performance, Flexible, Solid-State Supercapacitors Based on a Renewable and Biodegradable Mesoporous Cellulose Membrane. <i>Advanced Energy Materials</i> , 2017 , 7, 1700739	21.8	141
109	A carbon-based 3D current collector with surface protection for Li metal anode. <i>Nano Research</i> , 2017 , 10, 1356-1365	10	139
108	Integrated Intercalation-Based and Interfacial Sodium Storage in Graphene-Wrapped Porous Li4Ti5O12 Nanofibers Composite Aerogel. <i>Advanced Energy Materials</i> , 2016 , 6, 1600322	21.8	127

107	NASICON-Structured NaTi2(PO4)3@C Nanocomposite as the Low Operation-Voltage Anode Material for High-Performance Sodium-Ion Batteries. <i>ACS Applied Materials & Description</i> (2016), 8, 2238-46	9.5	124
106	Sandwich-like Ni2P nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. <i>Energy Storage Materials</i> , 2018 , 15, 234-241	19.4	122
105	TiN as a simple and efficient polysulfide immobilizer for lithium Bulfur batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 17711-17717	13	122
104	Narrow bandgap semiconductor decorated wood membrane for high-efficiency solar-assisted water purification. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 18839-18846	13	121
103	Enabling High-Areal-Capacity Lithium-Sulfur Batteries: Designing Anisotropic and Low-Tortuosity Porous Architectures. <i>ACS Nano</i> , 2017 , 11, 4801-4807	16.7	113
102	Hierarchically Porous, Ultrathick, B reathable I Wood-Derived Cathode for Lithium-Oxygen Batteries. <i>Advanced Energy Materials</i> , 2018 , 8, 1701203	21.8	109
101	Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices. <i>Advanced Energy Materials</i> , 2018 , 8, 1802398	21.8	108
100	Three-Dimensional, Solid-State Mixed Electron-Ion Conductive Framework for Lithium Metal Anode. <i>Nano Letters</i> , 2018 , 18, 3926-3933	11.5	108
99	Conformal N-doped carbon on nanoporous TiO2 spheres as a high-performance anode material for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 10375	13	103
98	A Dynamic Gel with Reversible and Tunable Topological Networks and Performances. <i>Matter</i> , 2020 , 2, 390-403	12.7	98
97	Transparent, Anisotropic Biofilm with Aligned Bacterial Cellulose Nanofibers. <i>Advanced Functional Materials</i> , 2018 , 28, 1707491	15.6	96
96	3D-Printed Graphene Oxide Framework with Thermal Shock Synthesized Nanoparticles for Li-CO2 Batteries. <i>Advanced Functional Materials</i> , 2018 , 28, 1805899	15.6	95
95	Scalable, anisotropic transparent paper directly from wood for light management in solar cells. <i>Nano Energy</i> , 2017 , 36, 366-373	17.1	90
94	Cellulose-Nanofiber-Enabled 3D Printing of a Carbon-Nanotube Microfiber Network. <i>Small Methods</i> , 2017 , 1, 1700222	12.8	89
93	Superflexible Wood. ACS Applied Materials & Therfaces, 2017, 9, 23520-23527	9.5	88
92	Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. <i>Advanced Functional Materials</i> , 2020 , 30, 1906307	15.6	87
91	A nanofluidic ion regulation membrane with aligned cellulose nanofibers. Science Advances, 2019, 5, ea	aau4233	8 81
90	3D interconnected porous NiMoO4 nanoplate arrays on Ni foam as high-performance binder-free electrode for supercapacitors. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22081-22087	13	81

(2018-2019)

89	Transient, in situ synthesis of ultrafine ruthenium nanoparticles for a high-rate Li © O2 battery. <i>Energy and Environmental Science</i> , 2019 , 12, 1100-1107	35.4	77
88	A strategy of selective and dendrite-free lithium deposition for lithium batteries. <i>Nano Energy</i> , 2017 , 42, 262-268	17.1	75
87	From Wood to Textiles: Top-Down Assembly of Aligned Cellulose Nanofibers. <i>Advanced Materials</i> , 2018 , 30, e1801347	24	75
86	In Operando Mechanism Analysis on Nanocrystalline Silicon Anode Material for Reversible and Ultrafast Sodium Storage. <i>Advanced Materials</i> , 2017 , 29, 1604708	24	75
85	Nature-Inspired Tri-Pathway Design Enabling High-Performance Flexible LiD2 Batteries. <i>Advanced Energy Materials</i> , 2019 , 9, 1802964	21.8	74
84	A strong, biodegradable and recyclable lignocellulosic bioplastic. <i>Nature Sustainability</i> , 2021 , 4, 627-635	22.1	74
83	Flexible lithium©O2 battery with ultrahigh capacity and stable cycling. <i>Energy and Environmental Science</i> , 2018 , 11, 3231-3237	35.4	74
82	3D lithium metal anodes hosted in asymmetric garnet frameworks toward high energy density batteries. <i>Energy Storage Materials</i> , 2018 , 14, 376-382	19.4	73
81	All-in-one lithium-sulfur battery enabled by a porous-dense-porous garnet architecture. <i>Energy Storage Materials</i> , 2018 , 15, 458-464	19.4	73
80	Facile fabrication of CuO nanosheets on Cu substrate as anode materials for electrochemical energy storage. <i>Journal of Alloys and Compounds</i> , 2014 , 586, 208-215	5.7	72
79	Controllable growth of TiO2-B nanosheet arrays on carbon nanotubes as a high-rate anode material for lithium-ion batteries. <i>Carbon</i> , 2014 , 69, 302-310	10.4	71
78	Scalable aesthetic transparent wood for energy efficient buildings. <i>Nature Communications</i> , 2020 , 11, 3836	17.4	71
77	Clear Wood toward High-Performance Building Materials. ACS Nano, 2019, 13, 9993-10001	16.7	70
76	A Strong, Tough, and Scalable Structural Material from Fast-Growing Bamboo. <i>Advanced Materials</i> , 2020 , 32, e1906308	24	69
75	Coordination of Surface-Induced Reaction and Intercalation: Toward a High-Performance Carbon Anode for Sodium-Ion Batteries. <i>Advanced Science</i> , 2017 , 4, 1600500	13.6	64
74	Bioinspired Solar-Heated Carbon Absorbent for Efficient Cleanup of Highly Viscous Crude Oil. <i>Advanced Functional Materials</i> , 2019 , 29, 1900162	15.6	64
73	Dense, Self-Formed Char Layer Enables a Fire-Retardant Wood Structural Material. <i>Advanced Functional Materials</i> , 2019 , 29, 1807444	15.6	63
72	Textile Inspired Lithium-Oxygen Battery Cathode with Decoupled Oxygen and Electrolyte Pathways. <i>Advanced Materials</i> , 2018 , 30, 1704907	24	63

71	Nanocellulose-based films and their emerging applications. <i>Current Opinion in Solid State and Materials Science</i> , 2019 , 23, 100764	12	62
70	Nanocellulose-Enabled, All-Nanofiber, High-Performance Supercapacitor. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 5919-5927	9.5	60
69	Highly Anisotropic Conductors. Advanced Materials, 2017, 29, 1703331	24	57
68	All Natural, High Efficient Groundwater Extraction via Solar Steam/Vapor Generation. <i>Advanced Sustainable Systems</i> , 2019 , 3, 1800055	5.9	56
67	Architecting a Floatable, Durable, and Scalable Steam Generator: Hydrophobic/Hydrophilic Bifunctional Structure for Solar Evaporation Enhancement. <i>Small Methods</i> , 2019 , 3, 1800176	12.8	54
66	TiO2-B nanosheets/anatase nanocrystals co-anchored on nanoporous graphene: in situ reduction-hydrolysis synthesis and their superior rate performance as an anode material. <i>Chemistry - A European Journal</i> , 2014 , 20, 1383-8	4.8	53
65	Conductive Wood for High-Performance Structural Electromagnetic Interference Shielding. <i>Chemistry of Materials</i> , 2020 , 32, 5280-5289	9.6	52
64	A printed, recyclable, ultra-strong, and ultra-tough graphite structural material. <i>Materials Today</i> , 2019 , 30, 17-25	21.8	51
63	A Clear, Strong, and Thermally Insulated Transparent Wood for Energy Efficient Windows. <i>Advanced Functional Materials</i> , 2020 , 30, 1907511	15.6	50
62	General, Vertical, Three-Dimensional Printing of Two-Dimensional Materials with Multiscale Alignment. <i>ACS Nano</i> , 2019 , 13, 12653-12661	16.7	49
61	Salinity-Gradient Power Generation with Ionized Wood Membranes. <i>Advanced Energy Materials</i> , 2020 , 10, 1902590	21.8	47
60	Architectural design and phase engineering of N/B-codoped TiO2(B)/anatase nanotube assemblies for high-rate and long-life lithium storage. <i>Journal of Materials Chemistry A</i> , 2015 , 3, 22591-22598	13	46
59	In Situ Chainmail Catalyst Assembly in Low-Tortuosity, Hierarchical Carbon Frameworks for Efficient and Stable Hydrogen Generation. <i>Advanced Energy Materials</i> , 2018 , 8, 1801289	21.8	44
58	Binding TiO2-B nanosheets with N-doped carbon enables highly durable anodes for lithium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 8172-8179	13	43
57	A Highly Conductive Cationic Wood Membrane. <i>Advanced Functional Materials</i> , 2019 , 29, 1902772	15.6	42
56	Bismuth oxyiodide nanosheets: a novel high-energy anode material for lithium-ion batteries. <i>Chemical Communications</i> , 2015 , 51, 2798-801	5.8	41
55	Synthesis of Metal Oxide Nanoparticles by Rapid, High-Temperature 3D Microwave Heating. <i>Advanced Functional Materials</i> , 2019 , 29, 1904282	15.6	40
54	Facile synthesis of bimodal porous graphitic carbon nitride nanosheets as efficient photocatalysts for hydrogen evolution. <i>Nano Energy</i> , 2018 , 50, 376-382	17.1	40

(2021-2020)

53	All-Natural, Degradable, Rolled-Up Straws Based on Cellulose Micro- and Nano-Hybrid Fibers. <i>Advanced Functional Materials</i> , 2020 , 30, 1910417	15.6	38
52	Selectively aligned cellulose nanofibers towards high-performance soft actuators. <i>Extreme Mechanics Letters</i> , 2019 , 29, 100463	3.9	37
51	Fire-Resistant Structural Material Enabled by an Anisotropic Thermally Conductive Hexagonal Boron Nitride Coating. <i>Advanced Functional Materials</i> , 2020 , 30, 1909196	15.6	37
50	Rapid Processing of Whole Bamboo with Exposed, Aligned Nanofibrils toward a High-Performance Structural Material. <i>ACS Nano</i> , 2020 , 14, 5194-5202	16.7	36
49	Synthesis of Hierarchically Porous Sandwich-Like Carbon Materials for High-Performance Supercapacitors. <i>Chemistry - A European Journal</i> , 2016 , 22, 16863-16871	4.8	36
48	Highly Elastic Hydrated Cellulosic Materials with Durable Compressibility and Tunable Conductivity. <i>ACS Nano</i> , 2020 ,	16.7	35
47	Uniform, Scalable, High-Temperature Microwave Shock for Nanoparticle Synthesis through Defect Engineering. <i>Matter</i> , 2019 , 1, 759-769	12.7	34
46	Flexible Solid-State Electrolyte with Aligned Nanostructures Derived from Wood 2019 , 1, 354-361		34
45	Anisotropic, Mesoporous Microfluidic Frameworks with Scalable, Aligned Cellulose Nanofibers. <i>ACS Applied Materials & District Material</i>	9.5	33
44	High-Performance, Scalable Wood-Based Filtration Device with a Reversed-Tree Design. <i>Chemistry of Materials</i> , 2020 , 32, 1887-1895	9.6	29
43	Single-digit-micrometer thickness wood speaker. <i>Nature Communications</i> , 2019 , 10, 5084	17.4	28
42	Ionic-Liquid-Assisted Synthesis of Self-Assembled TiO2-B Nanosheets under Microwave Irradiation and Their Enhanced Lithium Storage Properties. <i>European Journal of Inorganic Chemistry</i> , 2013 , 2013, 5320-5328	2.3	28
41	An Energy-Efficient, Wood-Derived Structural Material Enabled by Pore Structure Engineering towards Building Efficiency. <i>Small Methods</i> , 2020 , 4, 1900747	12.8	28
40	Reed Leaves Inspired Silica Nanofibrous Aerogels with Parallel-Arranged Vessels for Salt-Resistant Solar Desalination. <i>ACS Nano</i> , 2021 ,	16.7	28
39	Solar-assisted fabrication of large-scale, patternable transparent wood. Science Advances, 2021, 7,	14.3	28
38	Holey three-dimensional wood-based electrode for vanadium flow batteries. <i>Energy Storage Materials</i> , 2020 , 27, 327-332	19.4	27
37	A strong, flame-retardant, and thermally insulating wood laminate. <i>Chemical Engineering Journal</i> , 2020 , 383, 123109	14.7	27
36	In Situ Lignin Modification toward Photonic Wood. <i>Advanced Materials</i> , 2021 , 33, e2001588	24	27

35	Highly Efficient Water Treatment via a Wood-Based and Reusable Filter 2020 , 2, 430-437		24
34	Biomaterial-assisted synthesis of AgCl@Ag concave cubes with efficient visible-light-driven photocatalytic activity. <i>CrystEngComm</i> , 2014 , 16, 649-653	3.3	24
33	Nanoscale Ion Regulation in Wood-Based Structures and Their Device Applications. <i>Advanced Materials</i> , 2021 , 33, e2002890	24	24
32	Self-assembled 3D hierarchical sheaf-like Nb3O7(OH) nanostructures with enhanced photocatalytic activity. <i>Nanoscale</i> , 2015 , 7, 1963-9	7.7	20
31	Decoupling Ionic and Electronic Pathways in Low-Dimensional Hybrid Conductors. <i>Journal of the American Chemical Society</i> , 2019 , 141, 17830-17837	16.4	20
30	Precision Imprinted Nanostructural Wood. <i>Advanced Materials</i> , 2019 , 31, e1903270	24	20
29	Rational synthesis of carbon-coated hollow Ge nanocrystals with enhanced lithium-storage properties. <i>Nanoscale</i> , 2016 , 8, 12215-20	7.7	19
28	Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material. <i>Science</i> , 2021 , 374, 465-471	33.3	18
27	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305	24	16
26	Strong, Water-Stable Ionic Cable from Bio-Hydrogel. <i>Chemistry of Materials</i> , 2019 , 31, 9288-9294	9.6	15
25	A self-buffering structure for application in high-performance sodium-ion batteries. <i>Energy Storage Materials</i> , 2018 , 15, 242-248	19.4	14
24	In Situ Wood Delignification toward Sustainable Applications. <i>Accounts of Materials Research</i> , 2021 , 2, 606-620	7.5	14
23	Phase control of TiO2 nanobelts by microwave irradiation as anode materials with tunable Li-diffusion kinetics. <i>Materials Research Bulletin</i> , 2017 , 96, 365-371	5.1	13
22	Microwave-assisted synthesis of self-assembled BiO1.84H0.08 hierarchical nanostructures as a new photocatalyst. <i>Applied Surface Science</i> , 2014 , 319, 244-249	6.7	13
21	Tailoring grain growth and densification toward a high-performance solid-state electrolyte membrane. <i>Materials Today</i> , 2021 , 42, 41-48	21.8	13
20	Granadilla-Inspired Structure Design for Conversion/Alloy-Reaction Electrode with Integrated Lithium Storage Behaviors. <i>ACS Applied Materials & Mater</i>	9.5	11
19	A Stiffness-Switchable, Biomimetic Smart Material Enabled by Supramolecular Reconfiguration <i>Advanced Materials</i> , 2021 , e2107857	24	11
18	Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 149	92861 / 19	371

LIST OF PUBLICATIONS

17	Scalable Wood Hydrogel Membrane with Nanoscale Channels. ACS Nano, 2021,	16.7	10
16	Sustainable high-strength macrofibres extracted from natural bamboo. <i>Nature Sustainability</i> , 2022 , 5, 235-244	22.1	10
15	Thermal Shock Synthesis of Nanocatalyst by 3D-Printed Miniaturized Reactors. Small, 2020, 16, e20005	09 1	9
14	Strong and Superhydrophobic Wood with Aligned Cellulose Nanofibers as a Waterproof Structural Material <i>Chinese Journal of Chemistry</i> , 2020 , 38, 823-829	4.9	9
13	Sandwich-like NiP nanoarray/nitrogen-doped graphene nanoarchitecture as a high-performance anode for sodium and lithium ion batteries. <i>Data in Brief</i> , 2018 , 20, 1999-2002	1.2	9
12	Super Elastic and Thermally Insulating Carbon Aerogel: Go Tubular Like Polar Bear Hair. <i>Matter</i> , 2019 , 1, 36-38	12.7	7
11	Shape-driven arrest of coffee stain effect drives the fabrication of carbon-nanotube-graphene-oxide inks for printing embedded structures and temperature sensors. <i>Nanoscale</i> , 2019 , 11, 23402-23415	7.7	7
10	Janus Fibrous Mats Based Suspended Type Evaporator for Salt Resistant Solar Desalination and Salt Recovery <i>Small</i> , 2022 , e2107156	11	6
9	Catalyst-Free Carbon Nanotube Growth in Confined Space High Temperature Gradient. <i>Research</i> , 2018 , 2018, 1793784	7.8	6
8	One-Step, Catalyst-Free, Scalable in Situ Synthesis of Single-Crystal Aluminum Nanowires in Confined Graphene Space. <i>ACS Applied Materials & Samp; Interfaces</i> , 2019 , 11, 6009-6014	9.5	6
7	Extremely strong and tough chitosan films mediated by unique hydrated chitosan crystal structures. <i>Materials Today</i> , 2021 , 51, 27-27	21.8	5
6	3D-Printed, High-Porosity, High-Strength Graphite Aerogel <i>Small Methods</i> , 2021 , 5, e2001188	12.8	5
5	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. <i>Nano Letters</i> , 2021 , 21, 4517-45	5 23 1.5	2
4	A bio-inspired, hierarchically porous structure with a decoupled fluidic transportation and evaporative pathway toward high-performance evaporation. <i>Journal of Materials Chemistry A</i> , 2021 , 9, 9745-9752	13	2
3	Wood Ionic Cable. <i>Small</i> , 2021 , 17, e2008200	11	2
2	Potential of Zero Charge Regulating Highly Selective Removal of Nitrate Anions through Capacitive Deionization. <i>Chemical Engineering Journal</i> , 2022 , 136287	14.7	0
1	A low-corrosivity structural timber. <i>Cell Reports Physical Science</i> , 2022 , 100921	6.1	0