Dinesh Shetty

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/218042/publications.pdf

Version: 2024-02-01

172457 2,415 47 29 citations h-index papers

g-index 53 53 53 2876 docs citations times ranked citing authors all docs

223800

46

#	Article	IF	CITATIONS
1	Solventâ€Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie - International Edition, 2022, 61, .	13.8	24
2	Titelbild: Solventâ€Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching (Angew. Chem. 13/2022). Angewandte Chemie, 2022, 134, .	2.0	0
3	Metallated Isoindigo–Porphyrin Covalent Organic Framework Photocatalyst with a Narrow Band Gap for Efficient CO ₂ Conversion. ACS Applied Materials & Samp; Interfaces, 2022, 14, 2015-2022.	8.0	31
4	Polythiacalixarene-Embedded Gold Nanoparticles for Visible-Light-Driven Photocatalytic CO ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 30796-30801.	8.0	8
5	Viologen–cucurbituril host/guest chemistry – redox control of dimerization <i>versus</i> inclusion. RSC Advances, 2021, 11, 29543-29554.	3.6	3
6	Taming the Topology of Calix[4]arene-Based 2D-Covalent Organic Frameworks: Interpenetrated vs Noninterpenetrated Frameworks and Their Selective Removal of Cationic Dyes. Journal of the American Chemical Society, 2021, 143, 3407-3415.	13.7	80
7	Porous Polycalix[<i>n</i>)]arenes as Environmental Pollutant Removers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 14802-14815.	8.0	34
8	Pollutant removal with organic macrocycle-based covalent organic polymers and frameworks. CheM, 2021, 7, 882-918.	11.7	111
9	Covalent Organic Polymers and Frameworks for Fluorescence-Based Sensors. ACS Sensors, 2021, 6, 1461-1481.	7.8	193
10	Macroscopic covalent organic framework architectures for water remediation. Environmental Science: Water Research and Technology, 2021, 7, 1895-1927.	2.4	18
11	Remarkably efficient removal of toxic bromate from drinking water with a porphyrin–viologen covalent organic framework. Chemical Science, 2020, 11, 845-850.	7.4	63
12	Rapid and Efficient Removal of Perfluorooctanoic Acid from Water with Fluorine-Rich Calixarene-Based Porous Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43160-43166.	8.0	40
13	Fast and efficient removal of paraquat in water by porous polycalix[$\langle i \rangle n \langle i \rangle$] arenes ($\langle i \rangle n \langle i \rangle = 4, 6,$) Tj ETQq1 1	0.784314 10.3	1 rgBT /Over <mark>lo</mark>
14	Design Strategies and Redox-Dependent Applications of Insoluble Viologen-Based Covalent Organic Polymers. ACS Applied Materials & Samp; Interfaces, 2019, 11, 6705-6716.	8.0	66
15	Self-assembly of stimuli-responsive imine-linked calix[4] arene nanocapsules for targeted camptothecin delivery. Chemical Communications, 2019, 55, 8876-8879.	4.1	24
16	Thioether-Crown-Rich Calix[4]arene Porous Polymer for Highly Efficient Removal of Mercury from Water. ACS Applied Materials & Samp; Interfaces, 2019, 11, 12898-12903.	8.0	52
17	Making pillar[6]arenes to lean: an art of tuning a supramolecular host. Science China Chemistry, 2019, 62, 289-290.	8.2	10
18	Calix[4]arene-Based Porous Organic Nanosheets. ACS Applied Materials & Samp; Interfaces, 2018, 10, 17359-17365.	8.0	39

#	Article	IF	CITATIONS
19	Redoxâ€Responsive Covalent Organic Nanosheets from Viologens and Calix[4]arene for Iodine and Toxic Dye Capture. Chemistry - A European Journal, 2018, 24, 8648-8655.	3.3	43
20	Porous Polycalix[4] arenes for Fast and Efficient Removal of Organic Micropollutants from Water. ACS Applied Materials & D. 10, 2976-2981.	8.0	87
21	Enrichment of Specifically Labeled Proteins by an Immobilized Host Molecule. Angewandte Chemie, 2017, 129, 2435-2438.	2.0	8
22	Enrichment of Specifically Labeled Proteins by an Immobilized Host Molecule. Angewandte Chemie - International Edition, 2017, 56, 2395-2398.	13.8	36
23	Cucurbit[6]uril-based polymer nanocapsules as a non-covalent and modular bioimaging platform for multimodal in vivo imaging. Materials Horizons, 2017, 4, 450-455.	12.2	38
24	Lithiated Polycalix[4] arenes for Efficient Adsorption of Iodine from Solution and Vapor Phases. Chemistry of Materials, 2017, 29, 8968-8972.	6.7	117
25	An ultra-absorbent alkyne-rich porous covalent polycalix[4]arene for water purification. Journal of Materials Chemistry A, 2017, 5, 62-66.	10.3	77
26	E-Bodipy fluorescent chemosensor for Zn2+ ion. Journal of Photochemistry and Photobiology A: Chemistry, 2016, 331, 233-239.	3.9	11
27	Eliminating the Heart from the Curcumin Molecule: Monocarbonyl Curcumin Mimics (MACs). Molecules, 2015, 20, 249-292.	3.8	53
28	A Multifunctional Subphthalocyanine Nanosphere for Targeting, Labeling, and Killing of Antibioticâ€Resistant Bacteria. Angewandte Chemie - International Edition, 2015, 54, 15152-15155.	13.8	75
29	A simple modular aptasensor platform utilizing cucurbit[7]uril and a ferrocene derivative as an ultrastable supramolecular linker. Chemical Communications, 2015, 51, 3098-3101.	4.1	27
30	Reversible Morphological Transformation between Polymer Nanocapsules and Thin Films through Dynamic Covalent Selfâ€Assembly. Angewandte Chemie - International Edition, 2015, 54, 2693-2697.	13.8	36
31	High Affinity Host–Guest FRET Pair for Single-Vesicle Content-Mixing Assay: Observation of Flickering Fusion Events. Journal of the American Chemical Society, 2015, 137, 8908-8911.	13.7	82
32	Self-Assembly of Nanostructured Materials through Irreversible Covalent Bond Formation. Accounts of Chemical Research, 2015, 48, 2221-2229.	15.6	116
33	Can we beat the biotin–avidin pair?: cucurbit[7]uril-based ultrahigh affinity host–guest complexes and their applications. Chemical Society Reviews, 2015, 44, 8747-8761.	38.1	357
34	Al18F-NODA-butyric acid: Biological evaluation of a new PET renal radiotracer. Nuclear Medicine and Biology, 2014, 41, 248-253.	0.6	15
35	Stroma Targeting Nuclear Imaging and Radiopharmaceuticals. International Journal of Molecular Imaging, 2012, 2012, 1-23.	1.3	3
36	Evaluation of 111 In-labeled macrocyclic chelator-amino acid derivatives for cancer imaging. Nuclear Medicine and Biology, 2012, 39, 325-333.	0.6	4

#	Article	IF	CITATIONS
37	Syntheses of 2-Nitroimidazole Derivatives Conjugated with 1,4,7-Triazacyclononane- <i>N</i> , <i>N</i> ,′-Diacetic Acid Labeled with F-18 Using an Aluminum Complex Method for Hypoxia Imaging. Journal of Medicinal Chemistry, 2012, 55, 3155-3162.	6.4	42
38	Development of a bifunctional chelating agent containing isothiocyanate residue for one step F-18 labeling of peptides and application for RGD labeling. Bioorganic and Medicinal Chemistry, 2012, 20, 5941-5947.	3.0	21
39	Stable aluminium fluoride chelates with triazacyclononane derivatives proved by X-ray crystallography and 18F-labeling study. Chemical Communications, 2011, 47, 9732.	4.1	69
40	Synthesis of 68Ga-labeled DOTA-nitroimidazole derivatives and their feasibilities as hypoxia imaging PET tracers. Bioorganic and Medicinal Chemistry, 2011, 19, 2176-2181.	3.0	53
41	68Ga-Labeled Radiopharmaceuticals for Positron Emission Tomography. Nuclear Medicine and Molecular Imaging, 2010, 44, 233-240.	1.0	45
42	Formation and Characterization of Gallium(III) Complexes with Monoamide Derivatives of 1,4,7-Triazacyclononane-1,4,7-triacetic Acid: A Study of the Dependency of Structure on Reaction pH. European Journal of Inorganic Chemistry, 2010, 2010, 5432-5438.	2.0	17
43	Synthesis and evaluation of macrocyclic amino acid derivatives for tumor imaging by gallium-68 positron emission tomography. Bioorganic and Medicinal Chemistry, 2010, 18, 7338-7347.	3.0	38
44	Synthesis and Characterization of Nitroimidazole Derivatives for ⁶⁸ Ga-Labeling and Testing in Tumor Xenografted Mice. Journal of Medicinal Chemistry, 2010, 53, 6378-6385.	6.4	57
45	Synthesis of novel 68Ga-labeled amino acid derivatives for positron emission tomography of cancer cells. Nuclear Medicine and Biology, 2010, 37, 893-902.	0.6	23
46	Facile Chlorination of Benzyl Alcohols Using 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) and Sulfonyl Chlorides. Bulletin of the Korean Chemical Society, 2010, 31, 3434-3436.	1.9	5
47	Solvent Influenced Fragmentations in Freeâ€Standing Threeâ€Dimensional Covalent Organic Framework Membranes for Hydrophobicity Switching. Angewandte Chemie, 0, , .	2.0	O