Andrew P Dicks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/218035/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of Cu+ as the effective reagent in nitric oxide formation from S-nitrosothiols (RSNO). Journal of the Chemical Society Perkin Transactions II, 1996, , 481.	0.9	168
2	Generation of nitric oxide from S-nitrosothiols using protein-bound Cu2+ sources. Chemistry and Biology, 1996, 3, 655-659.	6.2	117
3	Spectroscopic Characterization of the Initial C8 Intermediate in the Reaction of the 2-FluorenyInitrenium Ion with 2â€~Deoxyguanosine. Journal of the American Chemical Society, 1999, 121, 3303-3310.	6.6	101
4	Green chemistry teaching in higher education: a review of effective practices. Chemistry Education Research and Practice, 2012, 13, 69-79.	1.4	92
5	"Greening Up" the Suzuki Reaction. Journal of Chemical Education, 2008, 85, 555.	1.1	49
6	Direct Conversion of McDonald's Waste Cooking Oil into a Biodegradable High-Resolution 3D-Printing Resin. ACS Sustainable Chemistry and Engineering, 2020, 8, 1171-1177.	3.2	42
7	Decomposition of S-nitrosothiols: the effects of added thiols. Journal of the Chemical Society Perkin Transactions II, 1997, , 1429-1434.	0.9	38
8	Green Chemistry Metrics. Springer Briefs in Molecular Science, 2015, , .	0.1	36
9	The reaction of S-nitrosothiols with thiols at high thiol concentration. Canadian Journal of Chemistry, 1998, 76, 789-794.	0.6	35
10	A review of aqueous organic reactions for the undergraduate teaching laboratory. Green Chemistry Letters and Reviews, 2009, 2, 9-21.	2.1	34
11	Education: a microfluidic platform for university-level analytical chemistry laboratories. Lab on A Chip, 2012, 12, 696.	3.1	34
12	Green Chemistry Decision-Making in an Upper-Level Undergraduate Organic Laboratory. Journal of Chemical Education, 2014, 91, 1040-1043.	1.1	34
13	ConfChem Conference on Educating the Next Generation: Green and Sustainable Chemistry—Greening the Organic Curriculum: Development of an Undergraduate Catalytic Chemistry Course. Journal of Chemical Education, 2013, 90, 519-520.	1.1	32
14	Comparing the Traditional with the Modern: A Greener, Solvent-Free Dihydropyrimidone Synthesis. Journal of Chemical Education, 2009, 86, 730.	1.1	31
15	Two-Step Semi-Microscale Preparation of a Cinnamate Ester Sunscreen Analog. Journal of Chemical Education, 2004, 81, 1488.	1.1	28
16	Green Carbonyl Condensation Reactions Demonstrating Solvent and Organocatalyst Recyclability. Journal of Chemical Education, 2013, 90, 1067-1070.	1.1	28
17	Chemistry Writing Instruction and Training: Implementing a Comprehensive Approach to Improving Student Communication Skills. Journal of Chemical Education, 2016, 93, 86-92.	1.1	28
18	A Systems Thinking Department: Fostering a Culture of Green Chemistry Practice among Students. Journal of Chemical Education, 2019, 96, 2836-2844.	1.1	24

ANDREW P DICKS

#	Article	IF	CITATIONS
19	Rapid and Convenient Synthesis of the 1,4-Dihydropyridine Privileged Structure. Journal of Chemical Education, 2010, 87, 628-630.	1.1	23
20	A Decade of Undergraduate Research-Inspired Organic Laboratory Renewal. ACS Symposium Series, 2012, , 13-26.	0.5	22
21	Solvent-free reactivity in the undergraduate organic laboratory. Green Chemistry Letters and Reviews, 2009, 2, 87-100.	2.1	20
22	Assessing Process Mass Intensity and Waste via an <i>aza</i> -Baylis–Hillman Reaction. Journal of Chemical Education, 2015, 92, 1938-1942.	1.1	19
23	Lessons Learned from the COVID-19 Crisis: Adjusting Assessment Approaches within Introductory Organic Courses. Journal of Chemical Education, 2020, 97, 3406-3412.	1.1	19
24	Teaching reaction efficiency through the lens of green chemistry: Should students focus on the yield, or the process?. Current Opinion in Green and Sustainable Chemistry, 2018, 13, 27-31.	3.2	18
25	Spectroscopic characterization by laser flash photolysis of electrophilic intermediates derived from 4-aminostilbenes. Stilbene "nitrenium―ions and quinone methide imines â€. Journal of the Chemical Society Perkin Transactions II, 1999, , 1591-1600.	0.9	17
26	Use of NMR and NMR Prediction Software To Identify Components in Red Bull Energy Drinks. Journal of Chemical Education, 2009, 86, 360.	1.1	17
27	Undergraduate Oral Examinations in a University Organic Chemistry Curriculum. Journal of Chemical Education, 2012, 89, 1506-1510.	1.1	17
28	The EcoScale as a framework for undergraduate green chemistry teaching and assessment. Green Chemistry Letters and Reviews, 2018, 11, 29-35.	2.1	17
29	Comparing Industrial Amination Reactions in a Combined Class and Laboratory Green Chemistry Assignment. Journal of Chemical Education, 2019, 96, 93-99.	1.1	17
30	Semi-Microscale Williamson Ether Synthesis and Simultaneous Isolation of an Expectorant from Cough Tablets. Journal of Chemical Education, 2003, 80, 313.	1.1	16
31	Convenient Microscale Synthesis of a Coumarin Laser Dye Analog. Journal of Chemical Education, 2006, 83, 287.	1.1	16
32	Atom Economy and Reaction Mass Efficiency. Springer Briefs in Molecular Science, 2015, , 17-44.	0.1	16
33	The Petasis Reaction: Microscale Synthesis of a Tertiary Amine Antifungal Analog. Journal of Chemical Education, 2012, 89, 796-798.	1.1	15
34	The Chemistry Teaching Fellowship Program: Developing Curricula and Graduate Student Professionalism. Journal of Chemical Education, 2017, 94, 439-444.	1.1	15
35	An Oil Spill in a Tube: An Accessible Approach for Teaching Environmental NMR Spectroscopy. Journal of Chemical Education, 2015, 92, 693-697.	1.1	13
36	Kinetics and mechanism of the nitrosation of 2-mercaptopyridine [pyridine-2(1H )-thione]. Journal of the Chemical Society Perkin Transactions II, 1998, , 1869-1876.	0.9	12

ANDREW P DICKS

#	Article	IF	CITATIONS
37	Don't Forget the Workup. Journal of Chemical Education, 2015, 92, 405-405.	1.1	11
38	Recent Progress in Green Undergraduate Organic Laboratory Design. ACS Symposium Series, 2016, , 7-32.	0.5	11
39	Using Hydrocarbon Acidities To Demonstrate Principles of Organic Structure and Bonding. Journal of Chemical Education, 2003, 80, 1322.	1.1	10
40	Microscale Synthesis and Spectroscopic Analysis of Flutamide, an Antiandrogen Prostate Cancer Drug. Journal of Chemical Education, 2003, 80, 1439.	1.1	10
41	Investigating the Mechanism of Heteroaromatic Decarboxylation Using Solvent Kinetic Isotope Effects and Eyring Transition-State Theory. Journal of Chemical Education, 2011, 88, 1004-1006.	1.1	10
42	The Hammett Equation: Probing the Mechanism of Aromatic Semicarbazone Formation. Journal of Chemical Education, 2006, 83, 1341.	1.1	9
43	The Green Chemistry Initiative's contributions to education at the University of Toronto and beyond. Green Chemistry Letters and Reviews, 2019, 12, 187-195.	2.1	9
44	Tautomers and conjugate base of the nitrenium ion derived from N-acetylbenzidine. Journal of the Chemical Society Perkin Transactions II, 1999, , 1-4.	0.9	8
45	Keeping Your Students Awake: Facile Microscale Synthesis of Modafinil, a Modern Anti-Narcoleptic Drug. Journal of Chemical Education, 2006, 83, 1832.	1.1	8
46	The reaction of <i>S</i> -nitrosothiols with thiols at high thiol concentration. Canadian Journal of Chemistry, 1998, 76, 789-794.	0.6	8
47	Mentoring and professional identity formation for teaching stream faculty. International Journal of Mentoring and Coaching in Education, 2018, 7, 282-295.	0.7	7
48	Upper-Year Materials Chemistry Computational Modeling Module for Organic Display Technologies. Journal of Chemical Education, 2021, 98, 805-811.	1.1	7
49	Shake For Sigma, Pray For Pi: Classroom Orbital Overlap Analogies. Journal of Chemical Education, 2011, 88, 426-427.	1.1	6
50	The E Factor and Process Mass Intensity. Springer Briefs in Molecular Science, 2015, , 45-67.	0.1	6
51	A First-Year Chemistry Undergraduate "Course Community―at a Large, Research-Intensive University. Journal of Chemical Education, 2016, 93, 256-261.	1.1	6
52	The Five Senses of Christmas Chemistry. Journal of Chemical Education, 2012, 89, 1267-1273.	1.1	5
53	Selected Qualitative Green Metrics. Springer Briefs in Molecular Science, 2015, , 69-79.	0.1	5
54	Shifting the paradigm of chemistry education by Greening the high school laboratory. Sustainable Chemistry and Pharmacy, 2020, 16, 100242.	1.6	5

ANDREW P DICKS

#	Article	IF	CITATIONS
55	Advances in green chemistry education. Green Chemistry Letters and Reviews, 2019, 12, 101-101.	2.1	4
56	Green Chemistry and Associated Metrics. Springer Briefs in Molecular Science, 2015, , 1-15.	0.1	3
57	Microwave reactivity and energy efficiency in the undergraduate organic laboratory. , 2019, , 85-115.		3
58	CHAPTER 11. The State of Green Chemistry Instruction at Canadian Universities. , 2015, , 179-212.		3
59	A Supplement to the "Historical Origins of Stereochemical Line and Wedge Symbolism― Journal of Chemical Education, 2013, 90, 1109-1109.	1.1	1
60	Amazing Chemical Anagrams. Journal of Chemical Education, 2009, 86, 449.	1.1	0
61	Evolution of an ACS-CEI Award-Winning Undergraduate Course in Catalytic Organic Chemistry. ACS Symposium Series, 2020, , 111-123.	0.5	Ο