Hugo A C Denier Van Der Gon

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2180277/publications.pdf Version: 2024-02-01

Hugo A C Denier Van Der

#	Article	IF	CITATIONS
1	Evolution of anthropogenic and biomass burning emissions of air pollutants at global and regional scales during the 1980–2010 period. Climatic Change, 2011, 109, 163-190.	1.7	740
2	HTAP_v2.2: a mosaic of regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of air pollution. Atmospheric Chemistry and Physics, 2015, 15, 11411-11432.	1.9	647
3	Particulate matter, air quality and climate: lessons learned and future needs. Atmospheric Chemistry and Physics, 2015, 15, 8217-8299.	1.9	641
4	TNO-MACC_II emission inventory; a multi-year (2003–2009) consistent high-resolution European emission inventory for air quality modelling. Atmospheric Chemistry and Physics, 2014, 14, 10963-10976.	1.9	357
5	Urban air quality: The challenge of traffic non-exhaust emissions. Journal of Hazardous Materials, 2014, 275, 31-36.	6.5	314
6	Warming-induced increase in aerosol number concentration likely to moderate climate change. Nature Geoscience, 2013, 6, 438-442.	5.4	282
7	General overview: European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI) – integrating aerosol research from nano to global scales. Atmospheric Chemistry and Physics, 2011, 11, 13061-13143.	1.9	278
8	A regional air quality forecasting system over Europe: the MACC-II daily ensemble production. Geoscientific Model Development, 2015, 8, 2777-2813.	1.3	214
9	Modelling of organic aerosols over Europe (2002–2007) using a volatility basis set (VBS) framework: application of different assumptions regarding the formation of secondary organic aerosol. Atmospheric Chemistry and Physics, 2012, 12, 8499-8527.	1.9	193
10	Particulate emissions from residential wood combustion in Europe – revised estimates and an evaluation. Atmospheric Chemistry and Physics, 2015, 15, 6503-6519.	1.9	193
11	Model evaluation and ensemble modelling of surface-level ozone in Europe and North America in the context of AQMEII. Atmospheric Environment, 2012, 53, 60-74.	1.9	192
12	Influence of organic matter incorporation on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 1995, 9, 11-22.	1.9	181
13	The Policy Relevance of Wear Emissions from Road Transport, Now and in the Future—An International Workshop Report and Consensus Statement. Journal of the Air and Waste Management Association, 2013, 63, 136-149.	0.9	157
14	Comparing emission inventories and model-ready emission datasets between Europe and North America for the AQMEII project. Atmospheric Environment, 2012, 53, 4-14.	1.9	156
15	Emission factors for heavy metals from diesel and petrol used in European vehicles. Atmospheric Environment, 2012, 61, 641-651.	1.9	147
16	Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate matter. Atmospheric Environment, 2015, 115, 421-441.	1.9	133
17	Oxidation of methane in the rhizosphere of rice plants. Biology and Fertility of Soils, 1996, 22, 359-366.	2.3	125
18	Vertical emission profiles for Europe based on plume rise calculations. Environmental Pollution, 2011, 159, 2935-2946.	3.7	120

#	Article	IF	CITATIONS
19	Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign. Atmospheric Chemistry and Physics, 2011, 11, 10331-10347.	1.9	111
20	Emissions of persistent organic pollutants and eight candidate POPs from UNECE–Europe in 2000, 2010 and 2020 and the emission reduction resulting from the implementation of the UNECE POP protocol. Atmospheric Environment, 2007, 41, 9245-9261.	1.9	110
21	Satellite observations reveal extreme methane leakage from a natural gas well blowout. Proceedings of the United States of America, 2019, 116, 26376-26381.	3.3	107
22	Optimizing grain yields reduces CH4 emissions from rice paddy fields. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 12021-12024.	3.3	106
23	Formation of organic aerosol in the Paris region during the MEGAPOLI summer campaign: evaluation of the volatility-basis-set approach within the CHIMERE model. Atmospheric Chemistry and Physics, 2013, 13, 5767-5790.	1.9	105
24	Anthropogenic black carbon and fine aerosol distribution over Europe. Journal of Geophysical Research, 2004, 109, .	3.3	104
25	Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Scientific Reports, 2019, 9, 20033.	1.6	104
26	Elemental composition of current automotive braking materials and derived air emission factors. Atmospheric Environment, 2014, 99, 436-445.	1.9	101
27	Analysis of the emission inventories and model-ready emission datasets of Europe and North America for phase 2 of the AQMEII project. Atmospheric Environment, 2015, 115, 345-360.	1.9	100
28	Curriculum vitae of the LOTOS–EUROS (v2.0) chemistry transport model. Geoscientific Model Development, 2017, 10, 4145-4173.	1.3	100
29	In situ, satellite measurement and model evidence on the dominant regional contribution to fine particulate matter levels in the Paris megacity. Atmospheric Chemistry and Physics, 2015, 15, 9577-9591.	1.9	92
30	Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. Atmospheric Chemistry and Physics, 2015, 15, 783-798.	1.9	91
31	Fuel consumption and associated emissions from seagoing ships at berth derived from an on-board survey. Atmospheric Environment, 2010, 44, 1229-1236.	1.9	86
32	Linking climate and air quality over Europe: effects of meteorology on PM _{2.5} concentrations. Atmospheric Chemistry and Physics, 2014, 14, 10283-10298.	1.9	85
33	Time-resolved emission reductions for atmospheric chemistry modelling in Europe during the COVID-19 lockdowns. Atmospheric Chemistry and Physics, 2021, 21, 773-797.	1.9	84
34	Diffusion-controlled transport of methane from soil to atmosphere as mediated by rice plants. Biogeochemistry, 1993, 21, 177-190.	1.7	82
35	A revised estimate of copper emissions from road transport in UNECE-Europe and its impact on predicted copper concentrations. Atmospheric Environment, 2007, 41, 8697-8710.	1.9	80
36	Source apportionment of PM2.5 across China using LOTOS-EUROS. Atmospheric Environment, 2017, 164, 370-386.	1.9	79

#	Article	IF	CITATIONS
37	Air quality modelling in the Berlin–Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data. Geoscientific Model Development, 2016, 9, 4339-4363.	1.3	77
38	Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application. Journal of Geophysical Research, 1994, 99, 16457.	3.3	75
39	Brake wear from vehicles as an important source of diffuse copper pollution. Water Science and Technology, 2007, 56, 223-231.	1.2	70
40	Impact of grid resolution on the predicted fine PM by a regional 3-D chemical transport model. Atmospheric Environment, 2013, 68, 24-32.	1.9	68
41	Organic aerosol concentration and composition over Europe: insights from comparison of regional model predictions with aerosol mass spectrometer factor analysis. Atmospheric Chemistry and Physics, 2014, 14, 9061-9076.	1.9	68
42	Continental anthropogenic primary particle number emissions. Atmospheric Chemistry and Physics, 2016, 16, 6823-6840.	1.9	65
43	Impact of gypsum application on the methane emission from a wetland rice field. Global Biogeochemical Cycles, 1994, 8, 127-134.	1.9	64
44	Toward an Operational Anthropogenic CO2 Emissions Monitoring and Verification Support Capacity. Bulletin of the American Meteorological Society, 2020, 101, E1439-E1451.	1.7	63
45	Effect of rain events on the mobility of road dust load in two Dutch and Spanish roads. Atmospheric Environment, 2012, 62, 352-358.	1.9	61
46	Title is missing!. Mitigation and Adaptation Strategies for Global Change, 2001, 6, 71-89.	1.0	58
47	Indirect N2O emission due to atmospheric N deposition for the Netherlands. Atmospheric Environment, 2005, 39, 5827-5838.	1.9	58
48	Release of entrapped methane from wetland rice fields upon soil drying. Global Biogeochemical Cycles, 1996, 10, 1-7.	1.9	57
49	Anthropogenic and natural constituents in particulate matter in the Netherlands. Atmospheric Chemistry and Physics, 2011, 11, 2281-2294.	1.9	57
50	Short-term variability of mineral dust, metals and carbon emission from road dust resuspension. Atmospheric Environment, 2013, 74, 134-140.	1.9	57
51	Intercomparison of Magnitudes and Trends in Anthropogenic Surface Emissions From Bottomâ€Up Inventories, Topâ€Down Estimates, and Emission Scenarios. Earth's Future, 2020, 8, e2020EF001520.	2.4	54
52	CAMS-REG-v4: a state-of-the-art high-resolution European emission inventory for air quality modelling. Earth System Science Data, 2022, 14, 491-515.	3.7	53
53	Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands. Science of the Total Environment, 2010, 408, 4591-4599.	3.9	52
54	Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007. Atmospheric Chemistry and Physics, 2012, 12, 8727-8750.	1.9	52

#	Article	IF	CITATIONS
55	Quantification of the urban air pollution increment and its dependency on the use of down-scaled and bottom-up city emission inventories. Urban Climate, 2013, 6, 44-62.	2.4	51
56	Light-absorbing carbon in Europe – measurement and modelling, with a focus on residential wood combustion emissions. Atmospheric Chemistry and Physics, 2013, 13, 8719-8738.	1.9	51
57	Gaseous chemistry and aerosol mechanism developments for version 3.5.1 of the online regional model, WRF-Chem. Geoscientific Model Development, 2014, 7, 2557-2579.	1.3	51
58	Modeling emissions for three-dimensional atmospheric chemistry transport models. Journal of the Air and Waste Management Association, 2018, 68, 763-800.	0.9	51
59	Methane emission from a wetland rice field as affected by salinity. Plant and Soil, 1995, 170, 307-313.	1.8	50
60	Modelling the dispersion of particle numbers in five European cities. Geoscientific Model Development, 2016, 9, 451-478.	1.3	50
61	Multi-source SO ₂ emission retrievals and consistency of satellite and surface measurements with reported emissions. Atmospheric Chemistry and Physics, 2017, 17, 12597-12616.	1.9	50
62	On the variability of Black Smoke and carbonaceous aerosols in the Netherlands. Atmospheric Environment, 2007, 41, 5908-5920.	1.9	49
63	Changes in CH4emission from rice fields from 1960 to 1990s: 1. Impacts of modern rice technology. Global Biogeochemical Cycles, 2000, 14, 61-72.	1.9	47
64	Prediction of reducible soil iron content from iron extraction data. Biogeochemistry, 2003, 64, 231-245.	1.7	47
65	The origin of ambient particulate matter concentrations in the Netherlands. Atmospheric Environment, 2013, 69, 289-303.	1.9	47
66	Megacity ozone air quality under four alternative future scenarios. Atmospheric Chemistry and Physics, 2012, 12, 4413-4428.	1.9	45
67	Simulating ultrafine particle formation in Europe using a regional CTM: contribution of primary emissions versus secondary formation to aerosol number concentrations. Atmospheric Chemistry and Physics, 2012, 12, 8663-8677.	1.9	45
68	Evaluation of anthropogenic air pollutant emission inventories for South America at national and city scale. Atmospheric Environment, 2020, 235, 117606.	1.9	45
69	Uncertainty analysis of a European high-resolution emission inventory of CO ₂ and CO to support inverse modelling and network design. Atmospheric Chemistry and Physics, 2020, 20, 1795-1816.	1.9	44
70	Spatial and temporal dynamics of methane emissions from agricultural sources in China. Global Change Biology, 2001, 7, 31-47.	4.2	43
71	The effect of afforestation on water recharge and nitrogen leaching in The Netherlands. Forest Ecology and Management, 2006, 221, 170-182.	1.4	43
72	How much is particulate matter near the ground influenced by upper-level processes within and above the PBL? A summertime case study in Milan (Italy) evidences the distinctive role of nitrate. Atmospheric Chemistry and Physics, 2015, 15, 2629-2649.	1.9	42

#	Article	IF	CITATIONS
73	Variations in tropospheric submicron particle size distributions across the European continent 2008–2009. Atmospheric Chemistry and Physics, 2014, 14, 4327-4348.	1.9	41
74	Impact of residential combustion and transport emissions on air pollution in Santiago during winter. Atmospheric Environment, 2018, 190, 195-208.	1.9	41
75	Evaluation of receptor and chemical transport models for PM10 source apportionment. Atmospheric Environment: X, 2020, 5, 100053.	0.8	41
76	Copernicus Atmosphere Monitoring Service TEMPOral profiles (CAMS-TEMPO): global and European emission temporal profile maps for atmospheric chemistry modelling. Earth System Science Data, 2021, 13, 367-404.	3.7	41
77	Sources of organic aerosols in Europe: a modeling study using CAMx with modified volatility basis set scheme. Atmospheric Chemistry and Physics, 2019, 19, 15247-15270.	1.9	35
78	Evaluation of the performance of four chemical transport models in predicting the aerosol chemical composition in Europe in 2005. Atmospheric Chemistry and Physics, 2016, 16, 6041-6070.	1.9	34
79	Simulating the formation of carbonaceous aerosol in a European Megacity (Paris) during the MEGAPOLI summer and winter campaigns. Atmospheric Chemistry and Physics, 2016, 16, 3727-3741.	1.9	34
80	Sea salt emission, transport and influence on size-segregated nitrate simulation: a case study in northwestern Europe by WRF-Chem. Atmospheric Chemistry and Physics, 2016, 16, 12081-12097.	1.9	33
81	Lead emissions from road transport in Europe. Science of the Total Environment, 2009, 407, 5367-5372.	3.9	32
82	Atmospheric black carbon and warming effects influenced by the source and absorption enhancement in central Europe. Atmospheric Chemistry and Physics, 2014, 14, 12683-12699.	1.9	31
83	Impact of emission changes on secondary inorganic aerosol episodes across Germany. Atmospheric Chemistry and Physics, 2013, 13, 11675-11693.	1.9	29
84	Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979 to 2018 - Part 2: Local and street scale modelling and evaluation. Atmospheric Environment, 2021, 264, 118633.	1.9	29
85	Modelling ultrafine particle number concentrations at address resolution in Denmark from 1979-2018 – Part 1: Regional and urban scale modelling and evaluation. Atmospheric Environment, 2021, 264, 118631.	1.9	29
86	Ocean–Atmosphere Interactions of Particles. Springer Earth System Sciences, 2014, , 171-246.	0.1	29
87	Methane mapping, emission quantification, and attribution in two European cities: Utrecht (NL) and Hamburg (DE). Atmospheric Chemistry and Physics, 2020, 20, 14717-14740.	1.9	29
88	Upscaling Regional Emissions of Greenhouse Gases from Rice Cultivation: Methods and Sources of Uncertainty. Plant Ecology, 2006, 182, 89-106.	0.7	28
89	Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts. Atmospheric Chemistry and Physics, 2010, 10, 5797-5822.	1.9	27
90	A refinement of the emission data for Kola Peninsula based on inverse dispersion modelling. Atmospheric Chemistry and Physics, 2010, 10, 10849-10865.	1.9	26

#	Article	IF	CITATIONS
91	Estimation of the Paris NO _{<i>x</i>} emissions from mobile MAX-DOAS observations and CHIMERE model simulations during the MEGAPOLI campaign using the closed integral method. Atmospheric Chemistry and Physics, 2017, 17, 7853-7890.	1.9	26
92	New Directions: GEIA's 2020 vision for better air emissions information. Atmospheric Environment, 2013, 81, 710-712.	1.9	25
93	Methane emissions in the Netherlands: The Groningen field. Elementa, 2018, 6, .	1.1	25
94	Impact of a future H 2 transportation on atmospheric pollution in Europe. Atmospheric Environment, 2015, 113, 208-222.	1.9	24
95	Dynamic model evaluation for secondary inorganic aerosol and its precursors over Europe between 1990 and 2009. Geoscientific Model Development, 2015, 8, 1047-1070.	1.3	24
96	Impacts of controlling biomass burning emissions on wintertime carbonaceous aerosol in Europe. Atmospheric Environment, 2014, 87, 175-182.	1.9	23
97	Insights into the deterministic skill of air quality ensembles from the analysis of AQMEII data. Atmospheric Chemistry and Physics, 2016, 16, 15629-15652.	1.9	23
98	The consolidated European synthesis of CO ₂ emissions and removals for the European Union and United Kingdom: 1990–2018. Earth System Science Data, 2021, 13, 2363-2406.	3.7	23
99	Quantifying burning efficiency in megacities using the NO ₂ â^•CO ratio from the Tropospheric Monitoring Instrument (TROPOMI). Atmospheric Chemistry and Physics, 2020, 20, 10295-10310.	1.9	23
100	Changes in CH4emission from rice fields From 1960 to 1990s: 2. The declining use of organic inputs in rice farming. Global Biogeochemical Cycles, 1999, 13, 1053-1062.	1.9	22
101	Interpreting continuous in-situ observations of carbon dioxide and carbon monoxide in the urban port area of Rotterdam. Atmospheric Pollution Research, 2017, 8, 174-187.	1.8	21
102	Disease burden and excess mortality from coal-fired power plant emissions in Europe. Environmental Research Letters, 2021, 16, 045010.	2.2	21
103	Upscaling methane emissions from rice paddies: Problems and possibilities. Global Biogeochemical Cycles, 2002, 16, 14-1-14-12.	1.9	20
104	Inter-comparison between HERMESv2.0 and TNO-MACC-II emission data using the CALIOPE air quality system (Spain). Atmospheric Environment, 2014, 98, 134-145.	1.9	20
105	Variation of the NMVOC speciation in the solvent sector and the sensitivity of modelled tropospheric ozone. Atmospheric Environment, 2016, 135, 59-72.	1.9	20
106	Anthropogenic Vanadium emissions to air and ambient air concentrations in North-West Europe. E3S Web of Conferences, 2013, 1, 03004.	0.2	18
107	Source sector and region contributions to BC and PM _{2.5} in Central Asia. Atmospheric Chemistry and Physics, 2015, 15, 1683-1705.	1.9	18
108	Spatial distribution of residential wood combustion emissions in the Nordic countries: How well national inventories represent local emissions?. Atmospheric Environment, 2021, 264, 118712.	1.9	18

#	Article	IF	CITATIONS
109	High-resolution inventory of atmospheric emissions from transport, industrial, energy, mining and residential activities in Chile. Earth System Science Data, 2022, 14, 361-379.	3.7	18
110	Impact of inland shipping emissions on elemental carbon concentrations near waterways in The Netherlands. Atmospheric Environment, 2014, 95, 1-9.	1.9	17
111	Evaluation of the size segregation of elemental carbon (EC) emission in Europe: influence on the simulation of EC long-range transportation. Atmospheric Chemistry and Physics, 2016, 16, 1823-1835.	1.9	17
112	Methane emissions from the Munich Oktoberfest. Atmospheric Chemistry and Physics, 2020, 20, 3683-3696.	1.9	17
113	Reductions in nitrogen oxides over the Netherlands between 2005 and 2018 observed from space and on the ground: Decreasing emissions and increasing O3 indicate changing NOx chemistry. Atmospheric Environment: X, 2021, 9, 100104.	0.8	17
114	Title is missing!. Nutrient Cycling in Agroecosystems, 2000, 58, 285-301.	1.1	16
115	Evaluating BC and NO _{<i>x</i>} emission inventories for the Paris region from MEGAPOLI aircraft measurements. Atmospheric Chemistry and Physics, 2015, 15, 9799-9818.	1.9	15
116	A multi-model approach to monitor emissions of CO ₂ and CO from an urban–industrial complex. Atmospheric Chemistry and Physics, 2017, 17, 13297-13316.	1.9	15
117	The UrbEm Hybrid Method to Derive High-Resolution Emissions for City-Scale Air Quality Modeling. Atmosphere, 2021, 12, 1404.	1.0	15
118	European primary emissions of criteria pollutants and greenhouse gases in 2020 modulated by the COVID-19 pandemic disruptions. Earth System Science Data, 2022, 14, 2521-2552.	3.7	15
119	Effects of interpolation and data resolution on methane emission estimates from rice paddies. Environmental and Ecological Statistics, 2002, 9, 5-26.	1.9	14
120	Identifying key issues in environmental wetland research using scaling and uncertainty analysis. Regional Environmental Change, 2004, 4, 100-106.	1.4	14
121	Improving the modeling of road dust levels for Barcelona at urban scale and street level. Atmospheric Environment, 2016, 125, 231-242.	1.9	14
122	Decadal Variabilities in Tropospheric Nitrogen Oxides Over United States, Europe, and China. Journal of Geophysical Research D: Atmospheres, 2022, 127, e2021JD035872.	1.2	14
123	The CO2 Human Emissions (CHE) Project: First Steps Towards a European Operational Capacity to Monitor Anthropogenic CO2 Emissions. Frontiers in Remote Sensing, 2021, 2, .	1.3	13
124	Advancing global aerosol simulations with size-segregated anthropogenic particle number emissions. Atmospheric Chemistry and Physics, 2018, 18, 10039-10054.	1.9	12
125	European Emission Inventories and Projections for Road Transport Non-Exhaust Emissions. , 2018, , 101-121.		12
126	Natural sea-salt emissions moderate the climate forcing of anthropogenic nitrate. Atmospheric Chemistry and Physics, 2020, 20, 771-786.	1.9	12

#	Article	IF	CITATIONS
127	Air pollution impacts due to petroleum extraction in the Norwegian Sea during the ACCESS aircraft campaign. Elementa, 2017, 5, .	1.1	12
128	Inventory of country-specific emissions of engineered nanomaterials throughout the life cycle. Environmental Science: Nano, 2020, 7, 3824-3839.	2.2	11
129	Discrepancies Between Top-Down and Bottom-Up Emission Inventories of Megacities: The Causes and Relevance for Modeling Concentrations and Exposure. NATO Science for Peace and Security Series C: Environmental Security, 2011, , 199-204.	0.1	11
130	Oxidation of methane in the rhizosphere of rice plants. Biology and Fertility of Soils, 1996, 22, 359-366.	2.3	11
131	Emissions of methane in Europe inferred by total column measurements. Atmospheric Chemistry and Physics, 2019, 19, 3963-3980.	1.9	10
132	New Directions: Cleaning the air: Will the European Commission's clean air policy package of December 2013 deliver?. Atmospheric Environment, 2014, 91, 172-174.	1.9	8
133	Evaluating cloud properties in an ensemble of regional online coupled models against satellite observations. Atmospheric Chemistry and Physics, 2018, 18, 15183-15199.	1.9	8
134	Methane and ethane emission scenarios for potential shale gas production in Europe. Advances in Geosciences, 0, 45, 125-131.	12.0	8
135	Global anthropogenic CO ₂ emissions and uncertainties as a prior for Earth system modelling and data assimilation. Earth System Science Data, 2021, 13, 5311-5335.	3.7	7
136	Future European shale gas life-cycle GHG emissions for electric power generation in comparison to other fossil fuels. Carbon Management, 2019, 10, 163-174.	1.2	5
137	Analysis of the Anthropogenic and Biogenic NO _x Emissions Over 2008–2017: Assessment of the Trends in the 30 Most Populated Urban Areas in Europe. Geophysical Research Letters, 2021, 48, e2020GL092206.	1.5	5
138	Nitrogen Deposition and Nitrate Leaching Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and the Netherlands. , 2007, , 79-108.		5
139	Emission scenarios of a potential shale gas industry in Germany and the United Kingdom. Elementa, 2019, 7, .	1.1	5
140	Optimizing a dynamic fossil fuel CO ₂ emission model with CTDAS (CarbonTracker Data Assimilation Shell, v1.0) for an urban area using atmospheric observations of CO ₂ , CO, NO _{<i>x</i>} , and SO ₂ . Geoscientific Model Development, 2020, 13, 2695-2721.	1.3	5
141	Interception and Water Recharge Following Afforestation: Experiences from Oak and Norway Spruce Chronosequences in Denmark, Sweden and The Netherlands. , 2007, , 53-77.		4
142	Working group report How should the uncertainties in the results of scaling be investigated and decreased?. Developments in Atmospheric Science, 1999, 24, 299-313.	0.3	3
143	Estimation of Regional Methane Emission from Rice Fields Using Simple Atmospheric Diffusion Models. Nutrient Cycling in Agroecosystems, 2000, 58, 303-310.	1.1	3
144	Global nature run data with realistic high-resolution carbon weather for the year of the Paris Agreement. Scientific Data, 2022, 9, 160.	2.4	3

#	Article	IF	CITATIONS
145	A pragmatic protocol for characterising errors in atmospheric inversions of methane emissions over Europe. Tellus, Series B: Chemical and Physical Meteorology, 2022, 73, 1914989.	0.8	2
146	Soil parameters controlling methane emission from rice paddies. Studies in Environmental Science, 1995, , 607-610.	0.0	1
147	Modelling the Dispersion of Particle Numbers in Five European Cities. Springer Proceedings in Complexity, 2016, , 415-418.	0.2	1
148	Combining upscaling and downscaling of methane emissions from rice fields: methodologies and preliminary results. , 2000, , 285-301.		1
149	Assessing the Impact of Atmospheric CO2 and NO2 Measurements From Space on Estimating City-Scale Fossil Fuel CO2 Emissions in a Data Assimilation System. Frontiers in Remote Sensing, 2022, 3, .	1.3	1
150	Assessment report on NRP subtheme "gGeenhouse Gases― Studies in Environmental Science, 1995, 65, 453-533.	0.0	0
151	Upscaling regional emissions of greenhouse gases from rice cultivation: methods and sources of uncertainty. , 2006, , 89-108.		0
152	Can We Explain the Observed Decrease in Secondary Inorganic Aerosol and Its Precursors Between 1990 and 2009 over Europe Using LOTOS-EUROS?. Springer Proceedings in Complexity, 2014, , 481-488.	0.2	0
153	Estimation of Anthropogenic CO2 Emission from Ozone Monitoring Instrument Tropospheric NO2 Columns Using Chemistry Transport Modelling Over North Western Europe. Springer Proceedings in Complexity, 2016, , 587-591.	0.2	0