
Zheng Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179919/publications.pdf Version: 2024-02-01

ZHENC XII

#	Article	IF	CITATIONS
1	Parallel Microdispensing Method of High-Viscous Liquid Based on Electrostatic Force. Micromachines, 2022, 13, 545.	2.9	0
2	Breakup mechanism of the electrically induced conical liquid bridge. Physics of Fluids, 2022, 34, .	4.0	3
3	A Generic Algorithm for Position-Orientation Estimation with Microscopic Vision. IEEE Transactions on Instrumentation and Measurement, 2022, , 1-1.	4.7	1
4	Loading a High-Viscous Droplet via the Cone-Shaped Liquid Bridge Induced by an Electrostatic Force. Langmuir, 2021, 37, 2334-2340.	3.5	8
5	Droplet-patterning of viscous adhesive assisted with microfluidic technique. International Journal of Adhesion and Adhesives, 2020, 98, 102518.	2.9	0
6	Automatic Sorting System for Rigid Piezoelectric Transducer Wafers Used in Displacement Adjustment. Micromachines, 2020, 11, 915.	2.9	2
7	Drop-on-Demand Electrohydrodynamic Jet Printing of Graphene and Its Composite Microelectrode for High Performance Electrochemical Sensing. Journal of the Electrochemical Society, 2020, 167, 107508.	2.9	21
8	Nano-electrokinetic ion concentration in the ion enrichment zone. Microsystem Technologies, 2019, 25, 711-717.	2.0	5
9	Patterning sub-30 <i>µ</i> m liquid metal wires on PDMS substrates via stencil lithography and pre-stretching. Journal of Micromechanics and Microengineering, 2019, 29, 095001.	2.6	18
10	Non-enzymatic electrochemical detection of uric acid with electrodeposited Nafion film. Journal of Electroanalytical Chemistry, 2019, 841, 129-134.	3.8	27
11	Squeezing Dynamic Mechanism of High-Viscosity Droplet and its Application for Adhesive Dispensing in Sub-Nanoliter Resolution. Micromachines, 2019, 10, 728.	2.9	9
12	Improvement of electrochemical performance of screen-printed carbon electrodes by UV/ozone modification. Talanta, 2019, 192, 40-45.	5.5	23
13	Direct casting of a PDMS substrate holder from a structured polymer film for lab-on-a-foil bonding. Sensors and Actuators B: Chemical, 2018, 266, 570-576.	7.8	5
14	Fabrication of electrochemical carbon-based microelectrodes using electrohydrodynamic jet printing technique. Microsystem Technologies, 2018, 24, 1207-1212.	2.0	7
15	Influence of initial distance between needle tip and substrate on contact dispensing of high-viscosity adhesive. International Journal of Adhesion and Adhesives, 2018, 85, 23-28.	2.9	13
16	Electrochemical determination of glutamic pyruvic transaminase using a microfluidic chip. Microfluidics and Nanofluidics, 2017, 21, 1.	2.2	3
17	Electrokinetic ion breakdown in a nanochannel. AIP Advances, 2016, 6, 075025.	1.3	2
18	Electrokinetic ion transport in confined microâ€nanochannel. Electrophoresis, 2016, 37, 769-774.	2.4	9

ZHENG XU

#	Article	IF	CITATIONS
19	Electrokinetic concentrating with a nanofluidic device for magnetic beads-based antigen–antibody immunoassay. Microsystem Technologies, 2016, 22, 283-286.	2.0	2
20	Research on impact behaviour and silicon insert fracture phenomenon in microinjection moulding. AIP Advances, 2015, 5, 041317.	1.3	4
21	Fabrication of PMMA nanofluidic electrochemical chips with integrated microelectrodes. Biosensors and Bioelectronics, 2015, 72, 288-293.	10.1	16
22	Cyclic voltammetric determination of glutamic-pyruvic transaminase activity based on transdeamination. Analytical Methods, 2015, 7, 9421-9425.	2.7	3
23	Ion-enrichment and ion-depletion of nanochannels based on electrochemical potential in a micro-nanofluidic chip. Microsystem Technologies, 2014, 20, 35-39.	2.0	6
24	A Novel Method for Fabrication of Micro-Nanofluidic Devices and Its Application in Trace Enrichment. Chinese Journal of Analytical Chemistry, 2014, 42, 166-172.	1.7	5
25	Fabrication of a three-layer SU-8 mould with inverted T-shaped cavities based on a sacrificial photoresist layer technique. Biomedical Microdevices, 2014, 16, 655-660.	2.8	7
26	Modeling of capacitively coupled contactless conductivity detection on microfluidic chips. Microsystem Technologies, 2013, 19, 1991-1996.	2.0	3
27	Hot embossing of polymer nanochannels using PMMA moulds. Microsystem Technologies, 2013, 19, 629-634.	2.0	17
28	An effective PDMS microfluidic chip for chemiluminescence detection of cobalt (II) in water. Microsystem Technologies, 2013, 19, 99-103.	2.0	67
29	Observation of the induced pressure in a hybrid micro/nano-channel. Journal of Hydrodynamics, 2013, 25, 274-279.	3.2	3
30	Nanopore density effect of polyacrylamide gel plug on electrokinetic ion enrichment in a micro-nanofluidic chip. Applied Physics Letters, 2013, 103, 043103.	3.3	14
31	Fabrication of planar nanofluidic channels in thermoplastic polymers by O2 plasma etching. Micro and Nano Letters, 2012, 7, 159.	1.3	12
32	Flexible microassembly methods for micro/nanofluidic chips with an inverted microscope. Microelectronic Engineering, 2012, 97, 1-7.	2.4	6
33	Effects of electrophoresis and electroosmotic flow on ion enrichment in micro-nanofluidic preconcentrator. Microsystem Technologies, 2012, 18, 97-102.	2.0	11
34	Research on forming and application of U-form glass micro-nanofluidic chip with long nanochannels. Microfluidics and Nanofluidics, 2009, 7, 423-429.	2.2	17