
William Cookson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179814/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Airway mucins promote immunopathology in virus-exacerbated chronic obstructive pulmonary disease. Journal of Clinical Investigation, 2022, 132, .	3.9	27
2	A Pandemic Lesson for Global Lung Diseases: Exacerbations Are Preventable. American Journal of Respiratory and Critical Care Medicine, 2022, 205, 1271-1280.	2.5	19
3	Evidence of immunometabolic dysregulation and airway dysbiosis in athletes susceptible to respiratory illness. EBioMedicine, 2022, 79, 104024.	2.7	5
4	The fungal airway microbiome in cystic fibrosis and non-cystic fibrosis bronchiectasis. Journal of Cystic Fibrosis, 2021, 20, 295-302.	0.3	36
5	A large-scale genome-wide association analysis of lung function in the Chinese population identifies novel loci and highlights shared genetic aetiology with obesity. European Respiratory Journal, 2021, 58, 2100199.	3.1	30
6	ORMDL3 regulates poly I:C induced inflammatory responses in airway epithelial cells. BMC Pulmonary Medicine, 2021, 21, 167.	0.8	3
7	Y disruption, autosomal hypomethylation and poor male lung cancer survival. Scientific Reports, 2021, 11, 12453.	1.6	15
8	Airway microbial communities, smoking and asthma in a general population sample. EBioMedicine, 2021, 71, 103538.	2.7	26
9	Integrated genomics point to immune vulnerabilities in pleural mesothelioma. Scientific Reports, 2021, 11, 19138.	1.6	12
10	Estimating cell-type-specific DNA methylation effects in heterogeneous cellular populations. Epigenomics, 2021, 13, 87-97.	1.0	2
11	Bacterial Signatures of Paediatric Respiratory Disease: An Individual Participant Data Meta-Analysis. Frontiers in Microbiology, 2021, 12, 711134.	1.5	5
12	Comparison of the airway microbiota in children with chronic suppurative lung disease. BMJ Open Respiratory Research, 2021, 8, e001106.	1.2	3
13	Shared genetic and experimental links between obesity-related traits and asthma subtypes in UK Biobank. Journal of Allergy and Clinical Immunology, 2020, 145, 537-549.	1.5	240
14	Utility of Nuclear Grading System in Epithelioid Malignant Pleural Mesothelioma in Biopsy-heavy Setting. American Journal of Surgical Pathology, 2020, 44, 347-356.	2.1	25
15	The undiagnosed disease burden associated with alpha-1 antitrypsin deficiency genotypes. European Respiratory Journal, 2020, 56, 2001441.	3.1	40
16	In the Wrong Place at the Wrong Time: Microbial Misplacement and Acute Respiratory Distress Syndrome. American Journal of Respiratory and Critical Care Medicine, 2020, 201, 506-507.	2.5	1
17	Presence of pleomorphic features but not growth patterns improves prognostic stratification of epithelioid malignant pleural mesothelioma by 2â€ŧier nuclear grade. Histopathology, 2020, 77, 423-436.	1.6	9
18	Genomeâ€wide interaction study of earlyâ€life smoking exposure on timeâ€ŧoâ€asthma onset in childhood. Clinical and Experimental Allergy, 2019, 49, 1342-1351.	1.4	9

#	Article	IF	CITATIONS
19	EGF receptor (EGFR) inhibition promotes a slow-twitch oxidative, over a fast-twitch, muscle phenotype. Scientific Reports, 2019, 9, 9218.	1.6	14
20	Viral respiratory infections and the oropharyngeal bacterial microbiota in acutely wheezing children. PLoS ONE, 2019, 14, e0223990.	1.1	14
21	Metabolomic, transcriptomic and genetic integrative analysis reveals important roles of adenosine diphosphate in haemostasis and platelet activation in nonâ€smallâ€cell lung cancer. Molecular Oncology, 2019, 13, 2406-2421.	2.1	24
22	Inhaled corticosteroid suppression of cathelicidin drives dysbiosis and bacterial infection in chronic obstructive pulmonary disease. Science Translational Medicine, 2019, 11, .	5.8	75
23	Longitudinal development of the airway microbiota in infants with cystic fibrosis. Scientific Reports, 2019, 9, 5143.	1.6	19
24	A Haemophilus sp. dominates the microbiota of sputum from UK adults with non-severe community acquired pneumonia and chronic lung disease. Scientific Reports, 2019, 9, 2388.	1.6	12
25	P2.03-10 Comprehensive Molecular Profiling and Comparison of Common and Rarer Subtypes of Lung Cancer. Journal of Thoracic Oncology, 2019, 14, S686.	0.5	0
26	MA23.10 Low Number of Mutations and Frequent Co-Deletions of CDKN2A and IFN Type I Characterize Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2019, 14, S345.	0.5	2
27	MA23.11 Analysis of Immune Phenotype Composition in Malignant Pleural Mesothelioma (MPM) Using Bulk RNA Sequencing. Journal of Thoracic Oncology, 2019, 14, S345-S346.	0.5	0
28	P1.04-63 Correlation of Mutations in TP53, CDKN2A and PIK3CA with VISTA Expression in Pleomorphic Lung Carcinoma. Journal of Thoracic Oncology, 2019, 14, S465-S466.	0.5	0
29	P1.06-08 WDPM-Like but Not Cribriform as Secondary Growth Patterns Modify Survival in Epithelioid Malignant Pleural Mesothelioma. Journal of Thoracic Oncology, 2019, 14, S480-S481.	0.5	0
30	The <i>ORMDL3</i> Asthma Gene Regulates <i>ICAM1</i> and Has Multiple Effects on Cellular Inflammation. American Journal of Respiratory and Critical Care Medicine, 2019, 199, 478-488.	2.5	67
31	Manipulation of Dipeptidylpeptidase 10 in mouse and human <i>in vivo</i> and <i>in vitro</i> models indicates a protective role in asthma. DMM Disease Models and Mechanisms, 2018, 11, .	1.2	11
32	DNA methylation in childhood asthma: an epigenome-wide meta-analysis. Lancet Respiratory Medicine,the, 2018, 6, 379-388.	5.2	170
33	Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nature Genetics, 2018, 50, 42-53.	9.4	426
34	Role of airway glucose in bacterial infections in patients with chronic obstructive pulmonary disease. Journal of Allergy and Clinical Immunology, 2018, 142, 815-823.e6.	1.5	63
35	New opportunities for managing acute and chronic lung infections. Nature Reviews Microbiology, 2018, 16, 111-120.	13.6	80
36	A novel role for ciliary function in atopy: ADGRV1 and DNAH5 interactions. Journal of Allergy and Clinical Immunology, 2018, 141, 1659-1667.e11.	1.5	9

#	Article	IF	CITATIONS
37	Metal worker's lung: spatial association with <i>Mycobacterium avium</i> . Thorax, 2018, 73, 151-156.	2.7	18
38	Whole-Blood Gene Expression in Pulmonary Nontuberculous Mycobacterial Infection. American Journal of Respiratory Cell and Molecular Biology, 2018, 58, 510-518.	1.4	31
39	P2.06-41 Differentiating Sarcomatoid Mesothelioma from Pleomorphic Carcinoma and Chest Wall Sarcoma Using GATA-3/MUC4/BAP1 IHC. Journal of Thoracic Oncology, 2018, 13, S758-S759.	0.5	Ο
40	Profiling mycobacterial communities in pulmonary nontuberculous mycobacterial disease. PLoS ONE, 2018, 13, e0208018.	1.1	13
41	MA21.03 Heterogeneity in MET Copy Number and Intratumoural Subsets in Pleomorphic Lung Carcinoma: Implications for MET Directed Therapy in NSCLC. Journal of Thoracic Oncology, 2018, 13, S430.	0.5	0
42	The Genetics and Genomics of Asthma. Annual Review of Genomics and Human Genetics, 2018, 19, 223-246.	2.5	47
43	COPD is accompanied by co-ordinated transcriptional perturbation in the quadriceps affecting the mitochondria and extracellular matrix. Scientific Reports, 2018, 8, 12165.	1.6	27
44	Comparison of the upper and lower airway microbiota in children with chronic lung diseases. PLoS ONE, 2018, 13, e0201156.	1.1	27
45	Corticosteroid suppression of antiviral immunity increases bacterial loads and mucus production in COPD exacerbations. Nature Communications, 2018, 9, 2229.	5.8	153
46	An epigenome-wide association study of total serum IgE in Hispanic children. Journal of Allergy and Clinical Immunology, 2017, 140, 571-577.	1.5	53
47	Host–Microbial Interactions in Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2017, 195, 1640-1650.	2.5	169
48	Changes in the respiratory microbiome during acute exacerbations of idiopathic pulmonary fibrosis. Respiratory Research, 2017, 18, 29.	1.4	156
49	Network-assisted analysis of GWAS data identifies a functionally-relevant gene module for childhood-onset asthma. Scientific Reports, 2017, 7, 938.	1.6	14
50	Addressing unmet needs in understanding asthma mechanisms. European Respiratory Journal, 2017, 49, 1602448.	3.1	47
51	A mechanistic target of rapamycin complex 1/2 (mTORC1)/V-Akt murine thymoma viral oncogene homolog 1 (AKT1)/cathepsin H axis controls filaggrin expression and processing in skin, a novel mechanism for skin barrier disruption in patients with atopic dermatitis. Journal of Allergy and Clinical Immunology. 2017. 139. 1228-1241.	1.5	38
52	Validation of a 52-gene risk profile for outcome prediction in patients with idiopathic pulmonary fibrosis: an international, multicentre, cohort study. Lancet Respiratory Medicine,the, 2017, 5, 857-868.	5.2	115
53	Bacterial microbiota of the upper respiratory tract and childhood asthma. Journal of Allergy and Clinical Immunology, 2017, 139, 826-834.e13.	1.5	165
54	Pulmonary ORMDL3 is critical for induction of Alternaria-induced allergic airways disease. Journal of Allergy and Clinical Immunology, 2017, 139, 1496-1507.e3.	1.5	71

#	Article	IF	CITATIONS
55	MA 06.13 Direct Metabolomic Profiling of Lung Cancers. Journal of Thoracic Oncology, 2017, 12, S1824.	0.5	Ο
56	The impact of persistent bacterial bronchitis on the pulmonary microbiome of children. PLoS ONE, 2017, 12, e0190075.	1.1	26
57	Vitamin D levels and susceptibility to asthma, elevated immunoglobulin E levels, and atopic dermatitis: A Mendelian randomization study. PLoS Medicine, 2017, 14, e1002294.	3.9	78
58	Longitudinal assessment of sputum microbiome by sequencing of the 16S rRNA gene in non-cystic fibrosis bronchiectasis patients. PLoS ONE, 2017, 12, e0170622.	1.1	99
59	Global gene regulation during activation of immunoglobulin class switching in human B cells. Scientific Reports, 2016, 6, 37988.	1.6	28
60	DNA methylation within melatonin receptor 1A (MTNR1A) mediates paternally transmitted genetic variant effect on asthma plus rhinitis. Journal of Allergy and Clinical Immunology, 2016, 138, 748-753.	1.5	25
61	Identification of a new locus at 16q12 associated with time to asthma onset. Journal of Allergy and Clinical Immunology, 2016, 138, 1071-1080.	1.5	25
62	Airway Microbiota in Severe Asthma and Relationship to Asthma Severity and Phenotypes. PLoS ONE, 2016, 11, e0152724.	1.1	159
63	iGWAS: Integrative Genomeâ€Wide Association Studies of Genetic and Genomic Data for Disease Susceptibility Using Mediation Analysis. Genetic Epidemiology, 2015, 39, 347-356.	0.6	45
64	Late-Onset Bloodstream Infection and Perturbed Maturation of the Gastrointestinal Microbiota in Premature Infants. PLoS ONE, 2015, 10, e0132923.	1.1	75
65	An epigenome-wide association study of total serum immunoglobulin E concentration. Nature, 2015, 520, 670-674.	13.7	193
66	eQTL mapping identifies insertion- and deletion-specific eQTLs in multiple tissues. Nature Communications, 2015, 6, 6821.	5.8	18
67	Effects of different antibiotic classes on airway bacteria in stable COPD using culture and molecular techniques: a randomised controlled trial. Thorax, 2015, 70, 930-938.	2.7	61
68	Imputation of KIR Types from SNP Variation Data. American Journal of Human Genetics, 2015, 97, 593-607.	2.6	73
69	Outside In: Sequencing the Lung Microbiome. American Journal of Respiratory and Critical Care Medicine, 2015, 192, 403-404.	2.5	5
70	Dysbiosis Anticipating Necrotizing Enterocolitis in Very Premature Infants. Clinical Infectious Diseases, 2015, 60, 389-397.	2.9	168
71	Functional analysis of a novel ENU-induced PHD finger 11 (Phf11) mouse mutant. Mammalian Genome, 2014, 25, 573-582.	1.0	7
72	Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biology, 2014, 12, 87.	1.7	2,677

#	Article	IF	CITATIONS
73	Grasping nettles: cellular heterogeneity and other confounders in epigenome-wide association studies. Human Molecular Genetics, 2014, 23, R83-R88.	1.4	43
74	Predicting DNA methylation level across human tissues. Nucleic Acids Research, 2014, 42, 3515-3528.	6.5	113
75	Fraction of exhaled nitric oxide values in childhood are associated with 17q11.2-q12 and 17q12-q21 variants. Journal of Allergy and Clinical Immunology, 2014, 134, 46-55.	1.5	33
76	The Role of Bacteria in the Pathogenesis and Progression of Idiopathic Pulmonary Fibrosis. American Journal of Respiratory and Critical Care Medicine, 2014, 190, 906-913.	2.5	453
77	Novel childhood asthma genes interact with in utero and early-life tobacco smoke exposure. Journal of Allergy and Clinical Immunology, 2014, 133, 885-888.	1.5	47
78	P200 Preliminary Evaluation Of The Fungal Airway Microbiome In Adult Cystic Fibrosis By Next-generation Sequencing, Culture And Staining Techniques. Thorax, 2014, 69, A164-A164.	2.7	0
79	A functional IL-6 receptor (IL6R) variant is a risk factor for persistent atopic dermatitis. Journal of Allergy and Clinical Immunology, 2013, 132, 371-377.	1.5	86
80	Meta-analysis of Gene-Level Associations for Rare Variants Based on Single-Variant Statistics. American Journal of Human Genetics, 2013, 93, 236-248.	2.6	60
81	Sequencing the human microbiome in health and disease. Human Molecular Genetics, 2013, 22, R88-R94.	1.4	123
82	Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture. Nature Genetics, 2013, 45, 501-512.	9.4	578
83	A molecular comparison of microbial communities in bronchiectasis and cystic fibrosis. European Respiratory Journal, 2013, 41, 991-993.	3.1	16
84	Bedside to Gene and Back in Idiopathic Pulmonary Fibrosis. New England Journal of Medicine, 2013, 368, 2228-2230.	13.9	8
85	Outgrowth of the Bacterial Airway Microbiome after Rhinovirus Exacerbation of Chronic Obstructive Pulmonary Disease. American Journal of Respiratory and Critical Care Medicine, 2013, 188, 1224-1231.	2.5	329
86	A cross-platform analysis of 14,177 expression quantitative trait loci derived from lymphoblastoid cell lines. Genome Research, 2013, 23, 716-726.	2.4	135
87	A genome-wide association study of atopic dermatitis identifies loci with overlapping effects on asthma and psoriasis. Human Molecular Genetics, 2013, 22, 4841-4856.	1.4	202
88	Analgesia and central sideâ€effects: two separate dimensions of morphine response. British Journal of Clinical Pharmacology, 2013, 75, 1340-1350.	1.1	34
89	A Polymorphism Affecting <scp>MYB</scp> Binding within the Promoter of the <i>PDCD4</i> Gene is Associated with Severe Asthma in Children. Human Mutation, 2013, 34, 1131-1139.	1.1	24
90	Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Research, 2012, 22, 1845-1854.	2.4	173

#	Article	IF	CITATIONS
91	Significance of the microbiome in obstructive lung disease. Thorax, 2012, 67, 456-463.	2.7	190
92	Genetic and genomic approaches to asthma. Current Opinion in Pulmonary Medicine, 2012, 18, 6-13.	1.2	92
93	Seventy-five genetic loci influencing the human red blood cell. Nature, 2012, 492, 369-375.	13.7	320
94	Impact of Collection and Storage of Lung Tumor Tissue on Whole Genome Expression Profiling. Journal of Molecular Diagnostics, 2012, 14, 140-148.	1.2	36
95	Improved Detection of Bifidobacteria with Optimised 16S rRNA-Gene Based Pyrosequencing. PLoS ONE, 2012, 7, e32543.	1.1	170
96	The origin, global distribution, and functional impact of the human 8p23 inversion polymorphism. Genome Research, 2012, 22, 1144-1153.	2.4	70
97	Integrating pathway analysis and genetics of gene expression for genome-wide association study of basal cell carcinoma. Human Genetics, 2012, 131, 615-623.	1.8	29
98	Genetic risks and childhood-onset asthma. Journal of Allergy and Clinical Immunology, 2011, 128, 266-270.	1.5	27
99	Gene-environment interaction in chronic disease: AÂEuropean Science Foundation Forward Look. Journal of Allergy and Clinical Immunology, 2011, 128, S27-S49.	1.5	30
100	Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. Nature Genetics, 2011, 43, 1131-1138.	9.4	501
101	Gene-environment interactions in chronic inflammatory disease. Nature Immunology, 2011, 12, 273-277.	7.0	148
102	Genetics of Complex Airway Disease. Proceedings of the American Thoracic Society, 2011, 8, 149-153.	3.5	20
103	Exposure to Environmental Microorganisms and Childhood Asthma. New England Journal of Medicine, 2011, 364, 701-709.	13.9	1,339
104	Chromosome 17q21 SNP and severe asthma. Journal of Human Genetics, 2011, 56, 97-98.	1.1	43
105	Opportunities and Challenges in the Genetics of COPD 2010: An International COPD Genetics Conference Report. COPD: Journal of Chronic Obstructive Pulmonary Disease, 2011, 8, 121-135.	0.7	43
106	Gene Expression in Skin and Lymphoblastoid Cells: Refined Statistical Method Reveals Extensive Overlap in cis-eQTL Signals. American Journal of Human Genetics, 2010, 87, 779-789.	2.6	169
107	Meta-analysis of 20 genome-wide linkage studies evidenced new regions linked to asthma and atopy. European Journal of Human Genetics, 2010, 18, 700-706.	1.4	54
108	Polymorphisms of <i>PHF11</i> and <i>DPP10 </i> Are Associated with Asthma and Related Traits in a Chinese Population. Respiration, 2010, 79, 17-24.	1.2	24

#	Article	IF	CITATIONS
109	A genome-wide association study on African-ancestry populations for asthma. Journal of Allergy and Clinical Immunology, 2010, 125, 336-346.e4.	1.5	213
110	PDE11A associations with asthma: Results of a genome-wide association scan. Journal of Allergy and Clinical Immunology, 2010, 126, 871-873.e9.	1.5	45
111	Variants of <i>DENND1B</i> Associated with Asthma in Children. New England Journal of Medicine, 2010, 362, 36-44.	13.9	306
112	A Large-Scale, Consortium-Based Genomewide Association Study of Asthma. New England Journal of Medicine, 2010, 363, 1211-1221.	13.9	1,762
113	Disordered Microbial Communities in Asthmatic Airways. PLoS ONE, 2010, 5, e8578.	1.1	1,436
114	Dynamic and Physical Clustering of Gene Expression during Epidermal Barrier Formation in Differentiating Keratinocytes. PLoS ONE, 2009, 4, e7651.	1.1	26
115	Cenome-wide association studies in the genetics of asthma. Current Allergy and Asthma Reports, 2009, 9, 3-9.	2.4	24
116	Mapping complex disease traits with global gene expression. Nature Reviews Genetics, 2009, 10, 184-194.	7.7	790
117	Genome-wide Association Analysis Identifies PDE4D as an Asthma-Susceptibility Gene. American Journal of Human Genetics, 2009, 84, 581-593.	2.6	296
118	ENU mutagenesis as a tool for understanding lung development and disease. Biochemical Society Transactions, 2009, 37, 838-842.	1.6	12
119	Genome-Wide Scan on Total Serum IgE Levels Identifies FCER1A as Novel Susceptibility Locus. PLoS Genetics, 2008, 4, e1000166.	1.5	255
120	Asthma and Chitinases. New England Journal of Medicine, 2008, 358, 1725-1726.	13.9	2
121	Atopic Sensitization and the International Variation of Asthma Symptom Prevalence in Children. American Journal of Respiratory and Critical Care Medicine, 2007, 176, 565-574.	2.5	290
122	A genome-wide association study of global gene expression. Nature Genetics, 2007, 39, 1202-1207.	9.4	882
123	Filaggrin Mutations in Children with Severe Atopic Dermatitis. Journal of Investigative Dermatology, 2007, 127, 1667-1672.	0.3	186
124	Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature, 2007, 448, 470-473.	13.7	1,446
125	The genetics of atopic dermatitis. Journal of Allergy and Clinical Immunology, 2006, 118, 24-34.	1.5	220
126	Genetic variation in the beta subunit of the high affinity IgE receptor and atopy and asthma. Clinical and Experimental Allergy, 2006, 36, 855-857.	1.4	5

#	Article	IF	CITATIONS
127	Genome-wide genetic association of complex traits in heterogeneous stock mice. Nature Genetics, 2006, 38, 879-887.	9.4	508
128	Investigation of the Chromosome 17q25 PSORS2 Locus in Atopic Dermatitis. Journal of Investigative Dermatology, 2006, 126, 603-606.	0.3	16
129	A protocol for high-throughput phenotyping, suitable for quantitative trait analysis in mice. Mammalian Genome, 2006, 17, 129-146.	1.0	99
130	Genetic and Environmental Effects on Complex Traits in Mice. Genetics, 2006, 174, 959-984.	1.2	161
131	Association between a complex insertion/deletion polymorphism in NOD1 (CARD4) and susceptibility to inflammatory bowel disease. Human Molecular Genetics, 2005, 14, 1245-1250.	1.4	299
132	Haplotypes and Asthma. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1066-1067.	2.5	1
133	NOD1 variation, immunoglobulin E and asthma. Human Molecular Genetics, 2005, 14, 935-941.	1.4	245
134	Making Sense of Asthma Genes. New England Journal of Medicine, 2004, 351, 1794-1796.	13.9	50
135	The immunogenetics of asthma and eczema: a new focus on the epithelium. Nature Reviews Immunology, 2004, 4, 978-988.	10.6	349
136	A new gene for asthma: would you ADAM and Eve it?. Trends in Genetics, 2003, 19, 169-172.	2.9	30
137	Positional cloning of a quantitative trait locus on chromosome 13q14 that influences immunoglobulin E levels and asthma. Nature Genetics, 2003, 34, 181-186.	9.4	300
138	Positional cloning of a novel gene influencing asthma from Chromosome 2q14. Nature Genetics, 2003, 35, 258-263.	9.4	326
139	Competing Functions Encoded in the Allergy-Associated FcïµRlÎ ² Gene. Immunity, 2003, 18, 665-674.	6.6	63
140	LD mapping of maternally and non-maternally derived alleles and atopy in FcεRI-β. Human Molecular Genetics, 2003, 12, 2577-2585.	1.4	46
141	Benign asbestos pleural diseases. Current Opinion in Pulmonary Medicine, 2003, 9, 266-271.	1.2	57
142	Atopy, respiratory function and HLA-DR in Aboriginal Australians. Human Molecular Genetics, 2003, 12, 625-30.	1.4	5
143	Positive association to IgE levels and a physical map of the 13q14 atopy locus. European Journal of Human Genetics, 2002, 10, 266-270.	1.4	26
144	A detailed genetic map of the chromosome 7 bronchial hyper-responsiveness locus. European Journal of Human Genetics, 2002, 10, 177-182.	1.4	17

#	Article	IF	CITATIONS
145	Genetic and Perinatal Risk Factors for Asthma Onset and Severity: A Review and Theoretical Analysis. Epidemiologic Reviews, 2002, 24, 176-189.	1.3	66
146	Genetics and genomics of asthma and allergic diseases. Immunological Reviews, 2002, 190, 195-206.	2.8	107
147	Merlin—rapid analysis of dense genetic maps using sparse gene flow trees. Nature Genetics, 2002, 30, 97-101.	9.4	3,100
148	Allergy to <i>Dermatophagoides</i> in a Group of Spanish Gypsies: Genetic Restrictions. International Archives of Allergy and Immunology, 2001, 125, 297-306.	0.9	17
149	Allergy-Associated Polymorphisms of the FcεRIβ Subunit Do Not Impact Its Two Amplification Functions. Journal of Immunology, 2000, 165, 3917-3922.	0.4	62
150	A Genome-Wide Screen for Asthma-Associated Quantitative Trait Loci in a Mouse Model of Allergic Asthma. Human Molecular Genetics, 1999, 8, 601-605.	1.4	65
151	The alliance of genes and environment in asthma and allergy. Nature, 1999, 402, 5-11.	13.7	296
152	Germline TCR-A restriction of immunoglobulin E responses to allergen. Immunogenetics, 1997, 46, 226-230.	1.2	48
153	Naked DNA: New shots for allergy?. Nature Medicine, 1996, 2, 515-516.	15.2	1
154	A genome-wide search for quantitative trait loci underlying asthma. Nature, 1996, 383, 247-250.	13.7	750
155	Detection of a recessive major gene for high IgE levels acting independently of specific response to allergens. Genetic Epidemiology, 1995, 12, 93-105.	0.6	52
156	Reply to "Atopy in Australia― Nature Genetics, 1995, 10, 260-260.	9.4	5
157	Atopy: A Complex Genetic Disease. Annals of Medicine, 1994, 26, 351-353.	1.5	8
158	The genetics of atopy. Journal of Allergy and Clinical Immunology, 1994, 94, 643-644.	1.5	11
159	Batten disease (Spielmeyer-Vogt disease, juvenile onset neuronal ceroid-lipofuscinosis) gene (CLN3) maps to human chromosome 16. Genomics, 1990, 8, 387-390.	1.3	100
160	Increases in airway responsiveness to histamine precede allergen-induced late asthmatic responses. Journal of Allergy and Clinical Immunology, 1988, 82, 764-770.	1.5	121
161	The natural history of asbestosis in former crocidolite workers of Wittenoom Gorge. The American Review of Respiratory Disease, 1986, 133, 994-8.	2.9	37