
Esther G C Troost

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179557/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The European Particle Therapy Network (EPTN) consensus on the follow-up of adult patients with brain and skull base tumours treated with photon or proton irradiation. Radiotherapy and Oncology, 2022, 168, 241-249.	0.3	11
2	Joint EANM/SNMMI/ESTRO practice recommendations for the use of 2-[18F]FDG PET/CT external beam radiation treatment planning in lung cancer V1.0. European Journal of Nuclear Medicine and Molecular Imaging, 2022, 49, 1386-1406.	3.3	24
3	Experimental validation of 4D log fileâ€based proton dose reconstruction for interplay assessment considering amplitudeâ€sorted 4DCTs. Medical Physics, 2022, 49, 3538-3549.	1.6	8
4	Development of explanatory movies for the delineation of new organs at risk in neuro-oncology. Clinical and Translational Radiation Oncology, 2022, 33, 112-114.	0.9	2
5	Pre-treatment visualization of predicted radiation-induced acute alopecia in brain tumour patients. Clinical and Translational Radiation Oncology, 2022, 33, 106-111.	0.9	1
6	Local Control after Locally Ablative, Image-Guided Radiotherapy of Oligometastases Identified by Gallium-68-PSMA-Positron Emission Tomography in Castration-Sensitive Prostate Cancer Patients (OLI-P). Cancers, 2022, 14, 2073.	1.7	7
7	Treatment planning comparison in the PROTECT-trial randomising proton versus photon beam therapy in oesophageal cancer: Results from eight European centres. Radiotherapy and Oncology, 2022, 172, 32-41.	0.3	2
8	Assessment of gene expressions from squamous cell carcinoma of the head and neck to predict radiochemotherapy-related xerostomia and dysphagia. Acta Oncológica, 2022, 61, 856-863.	0.8	4
9	Analysis of MRI and CT-based radiomics features for personalized treatment in locally advanced rectal cancer and external validation of published radiomics models. Scientific Reports, 2022, 12, .	1.6	16
10	Evaluation of response using FDG-PET/CT and diffusion weighted MRI after radiochemotherapy of pancreatic cancer: aÂnon-randomized, monocentric phaseAll clinical trial—PaCa-DD-041 (Eudra-CT) Tj ETQq0	00 ngoBT /C	Dve da ck 10 Tf
11	Role of radiotherapy in the management of brain metastases of NSCLC – Decision criteria in clinical routine. Radiotherapy and Oncology, 2021, 154, 269-273.	0.3	11
12	Proposal for the delineation of neoadjuvant target volumes in oesophageal cancer. Radiotherapy and Oncology, 2021, 156, 102-112.	0.3	19
13	Technical Note: ADAM PETer – An anthropomorphic, deformable and multimodality pelvis phantom with positron emission tomography extension for radiotherapy. Medical Physics, 2021, 48, 1624-1632.	1.6	7
14	Definition and validation of a radiomics signature for loco-regional tumour control in patients with locally advanced head and neck squamous cell carcinoma. Clinical and Translational Radiation Oncology, 2021, 26, 62-70.	0.9	8
15	Toxicity of L19-Interleukin 2 Combined with Stereotactic Body Radiation Therapy: A Phase 1 Study. International Journal of Radiation Oncology Biology Physics, 2021, 109, 1421-1430.	0.4	7
16	Dose-escalated simultaneously integrated boost photon or proton therapy in pancreatic cancer in an in-silico study: Gastrointestinal organs remain critical. Clinical and Translational Radiation Oncology, 2021, 27, 24-31.	0.9	2
17	Generation of biological hypotheses by functional imaging links tumor hypoxia to radiation induced tissue inflammation/glucose uptake in head and neck cancer. Radiotherapy and Oncology, 2021, 155, 204-211.	0.3	5
18	Do We Need Complex Image Features to Personalize Treatment of Patients with Locally Advanced Rectal Cancer?. Lecture Notes in Computer Science, 2021, , 775-785.	1.0	2

#	Article	IF	CITATIONS
19	MR Image Changes of Normal-Appearing Brain Tissue after Radiotherapy. Cancers, 2021, 13, 1573.	1.7	17
20	Modelling of late side-effects following cranial proton beam therapy. Radiotherapy and Oncology, 2021, 157, 15-23.	0.3	6
21	The ROCOCO performance scoring system translates dosimetric differences into clinically relevant endpoints: Comparing IMPT to VMAT in an example pilocytic astrocytoma dataset. Clinical and Translational Radiation Oncology, 2021, 28, 32-38.	0.9	2
22	Value of PET imaging for radiation therapy. Nuklearmedizin - NuclearMedicine, 2021, 60, 326-343.	0.3	2
23	Identification of patient benefit from proton beam therapy in brain tumour patients based on dosimetric and NTCP analyses. Radiotherapy and Oncology, 2021, 160, 69-77.	0.3	8
24	Value of PET imaging for radiation therapy. Strahlentherapie Und Onkologie, 2021, 197, 1-23.	1.0	16
25	Update of the EPTN atlas for CT- and MR-based contouring in Neuro-Oncology. Radiotherapy and Oncology, 2021, 160, 259-265.	0.3	32
26	Role of Postoperative Radiotherapy in the Management for Resected NSCLC – Decision Criteria in Clinical Routine Pre- and Post-LungART. Clinical Lung Cancer, 2021, 22, 579-586.	1.1	9
27	The impact of anatomical changes during photon or proton based radiation treatment on tumor dose in glioblastoma dose escalation trials. Radiotherapy and Oncology, 2021, 164, 202-208.	0.3	Ο
28	The role of postoperative thoracic radiotherapy and prophylactic cranial irradiation in early stage small cell lung cancer: Patient selection among ESTRO experts. Radiotherapy and Oncology, 2020, 145, 45-48.	0.3	9
29	How public health services pay for radiotherapy in Europe: an ESTRO–HERO analysis of reimbursement. Lancet Oncology, The, 2020, 21, e42-e54.	5.1	45
30	Quantification of plan robustness against different uncertainty sources for classical and anatomical robust optimized treatment plans in head and neck cancer proton therapy. British Journal of Radiology, 2020, 93, 20190573.	1.0	7
31	Photons or protons for reirradiation in (non-)small cell lung cancer: Results of the multicentric ROCOCO <i>in silico</i> study. British Journal of Radiology, 2020, 93, 20190879.	1.0	13
32	2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma. Scientific Reports, 2020, 10, 15625.	1.6	34
33	National societies' needs as assessed by the ESTRO National Societies Committee survey: A European perspective. Radiotherapy and Oncology, 2020, 151, 176-181.	0.3	3
34	The role of computational methods for automating and improving clinical target volume definition. Radiotherapy and Oncology, 2020, 153, 15-25.	0.3	31
35	Dose dependent cerebellar atrophy in glioma patients after radio(chemo)therapy. Radiotherapy and Oncology, 2020, 150, 262-267.	0.3	12
36	Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC. Cancers, 2020, 12, 3047.	1.7	19

#	Article	IF	CITATIONS
37	Individual patient data meta-analysis of FMISO and FAZA hypoxia PET scans from head and neck cancer patients undergoing definitive radio-chemotherapy. Radiotherapy and Oncology, 2020, 149, 189-196.	0.3	41
38	Investigation of interâ€fraction target motion variations in the context of pencil beam scanned proton therapy in nonâ€small cell lung cancer patients. Medical Physics, 2020, 47, 3835-3844.	1.6	16
39	Stereotactic ablative body radiotherapy (SABR) combined with immunotherapy (L19-IL2) versus standard of care in stage IV NSCLC patients, ImmunoSABR: a multicentre, randomised controlled open-label phase II trial. BMC Cancer, 2020, 20, 557.	1.1	29
40	The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping. Radiology, 2020, 295, 328-338.	3.6	1,869
41	Proton therapy special feature: introductory editorial. British Journal of Radiology, 2020, 93, 20209004.	1.0	9
42	Refinement of the Hounsfield lookâ€up table by retrospective application of patientâ€specific direct proton stoppingâ€power prediction from dualâ€energy CT. Medical Physics, 2020, 47, 1796-1806.	1.6	15
43	Practice recommendations for lung cancer radiotherapy during the COVID-19 pandemic: An ESTRO-ASTRO consensus statement. Radiotherapy and Oncology, 2020, 147, 227-228.	0.3	9
44	Once daily versus twice-daily radiotherapy in the management of limited disease small cell lung cancer – Decision criteria in routine practise. Radiotherapy and Oncology, 2020, 150, 26-29.	0.3	13
45	CT-based attenuation correction of whole-body radiotherapy treatment positioning devices in PET/MRI hybrid imaging. Physics in Medicine and Biology, 2020, 65, 23NT02.	1.6	4
46	T-Staging and Target Volume Definition by Imaging in Head and Neck Tumors. Medical Radiology, 2020, , 169-181.	0.0	0
47	Development and validation of NTCP models for acute side-effects resulting from proton beam therapy of brain tumours. Radiotherapy and Oncology, 2019, 130, 164-171.	0.3	27
48	CT imaging during treatment improves radiomic models for patients with locally advanced head and neck cancer. Radiotherapy and Oncology, 2019, 130, 10-17.	0.3	44
49	Reply to Piet R. Dirix, Carole Mercier, and Luc Y. Dirix's Letter to the Editor re: Fabian Lohaus, Klaus Zöphel, Steffen Löck, et al. Can Local Ablative Radiotherapy Revert Castration-resistant Prostate Cancer to an Earlier Stage of Disease? Eur Urol 2019;75:548–51. European Urology, 2019, 76, e103-e104.	0.9	0
50	Reduced diffusion in normal appearing white matter of glioma patients following radio(chemo)therapy. Radiotherapy and Oncology, 2019, 140, 110-115.	0.3	21
51	Inter-observer variability in target delineation increases during adaptive treatment of head-and-neck and lung cancer. Acta Óncológica, 2019, 58, 1378-1385.	0.8	24
52	ls reducing irradiated margins key to improving outcomes for radiotherapy?. Lancet Oncology, The, 2019, 20, 1208-1210.	5.1	2
53	Including anatomical variations in robust optimization for head and neck proton therapy can reduce the need of adaptation. Radiotherapy and Oncology, 2019, 131, 127-134.	0.3	42
54	Assessing robustness of radiomic features by image perturbation. Scientific Reports, 2019, 9, 614.	1.6	166

#	Article	IF	CITATIONS
55	Prophylactic cranial irradiation in stage IV small cell lung cancer: Selection of patients amongst European IASLC and ESTRO experts. Radiotherapy and Oncology, 2019, 133, 163-166.	0.3	24
56	Contact of a tumour with the pleura is not associated with regional recurrence following stereotactic ablative radiotherapy for early stage non-small cell lung cancer. Radiotherapy and Oncology, 2019, 131, 120-126.	0.3	3
57	Comparison of pancreatic respiratory motion management with three abdominal corsets for particle radiation therapy: Case study. Journal of Applied Clinical Medical Physics, 2019, 20, 111-119.	0.8	13
58	Detectability and structural stability of aÂliquid fiducial marker in fresh ex vivo pancreas tumour resection specimens on CT and 3T MRI. Strahlentherapie Und Onkologie, 2019, 195, 756-763.	1.0	4
59	Challenges and caveats of a multi-center retrospective radiomics study: an example of early treatment response assessment for NSCLC patients using FDG-PET/CT radiomics. PLoS ONE, 2019, 14, e0217536.	1.1	38
60	Consolidative thoracic radiotherapy in stage IV small cell lung cancer: Selection of patients amongst European IASLC and ESTRO experts. Radiotherapy and Oncology, 2019, 135, 74-77.	0.3	14
61	Early and late side effects, dosimetric parameters and quality of life after proton beam therapy and IMRT for prostate cancer: a matched-pair analysis. Acta Oncológica, 2019, 58, 916-925.	0.8	11
62	Repeat FMISO-PET imaging weakly correlates with hypoxia-associated gene expressions for locally advanced HNSCC treated by primary radiochemotherapy. Radiotherapy and Oncology, 2019, 135, 43-50.	0.3	25
63	Dual-energy CT for automatic organs-at-risk segmentation in brain-tumor patients using a multi-atlas and deep-learning approach. Scientific Reports, 2019, 9, 4126.	1.6	29
64	Correlation between FMISO-PET based hypoxia in the primary tumour and in lymph node metastases in locally advanced HNSCC patients. Clinical and Translational Radiation Oncology, 2019, 15, 108-112.	0.9	9
65	Neoadjuvant Radiochemotherapy Significantly Alters the Phenotype of Plasmacytoid Dendritic Cells and 6-Sulfo LacNAc+ Monocytes in Rectal Cancer. Frontiers in Immunology, 2019, 10, 602.	2.2	8
66	Utility of fiducial markers for target positioning in proton radiotherapy of oesophageal carcinoma. Radiotherapy and Oncology, 2019, 133, 28-34.	0.3	8
67	Successful immunotherapy and irradiation in a HIV-positive patient with metastatic Merkel cell carcinoma. Clinical and Translational Radiation Oncology, 2019, 15, 42-45.	0.9	10
68	Can Local Ablative Radiotherapy Revert Castration-resistant Prostate Cancer to an Earlier Stage of Disease?. European Urology, 2019, 75, 548-551.	0.9	36
69	Dose-guided patient positioning in proton radiotherapy using multicriteria-optimization. Zeitschrift Fur Medizinische Physik, 2019, 29, 216-228.	0.6	19
70	Reply to Laprie A. et al. Radiotherapy and Oncology, 2019, 130, 194.	0.3	0
71	FMISO-PET-based lymph node hypoxia adds to the prognostic value of tumor only hypoxia in HNSCC patients. Radiotherapy and Oncology, 2019, 130, 97-103.	0.3	14
72	Intensity-modulated proton therapy decreases dose to organs at risk in low-grade glioma patients: results of a multicentric <i>in silico</i> ROCOCO trial. Acta Oncológica, 2019, 58, 57-65.	0.8	20

#	Article	IF	CITATIONS
73	Photon vs. proton radiochemotherapy: Effects on brain tissue volume and perfusion. Radiotherapy and Oncology, 2018, 128, 121-127.	0.3	48
74	Evidence on the efficacy of primary radiosurgery or stereotactic radiotherapy for drug-resistant non-neoplastic focal epilepsy in adults: A systematic review. Seizure: the Journal of the British Epilepsy Association, 2018, 55, 83-92.	0.9	10
75	Relative biological effectiveness in proton beam therapy – Current knowledge and future challenges. Clinical and Translational Radiation Oncology, 2018, 9, 35-41.	0.9	96
76	Melanoma Brain Metastases: Local Therapies, Targeted Therapies, Immune Checkpoint Inhibitors and Their Combinations—Chances and Challenges. American Journal of Clinical Dermatology, 2018, 19, 529-541.	3.3	11
77	Retrospective assessment of MRI-based volumetric changes of normal tissues in glioma patients following radio(chemo)therapy. Clinical and Translational Radiation Oncology, 2018, 8, 17-21.	0.9	14
78	Prognostic Value of Head and Neck Tumor Proliferative Sphericity From 3'-Deoxy-3'-[¹⁸ F] Fluorothymidine Positron Emission Tomography. IEEE Transactions on Radiation and Plasma Medical Sciences, 2018, 2, 33-40.	2.7	12
79	The EPTN consensus-based atlas for CT- and MR-based contouring in neuro-oncology. Radiotherapy and Oncology, 2018, 128, 37-43.	0.3	80
80	Photons, protons or carbon ions for stage I non-small cell lung cancer – Results of the multicentric ROCOCO in silico study. Radiotherapy and Oncology, 2018, 128, 139-146.	0.3	32
81	The posterior cerebellum, a new organ at risk?. Clinical and Translational Radiation Oncology, 2018, 8, 22-26.	0.9	23
82	Comparison of different treatment planning approaches for intensity-modulated proton therapy with simultaneous integrated boost for pancreatic cancer. Radiation Oncology, 2018, 13, 228.	1.2	14
83	The role of functional imaging in lung cancer. Clinical and Translational Imaging, 2018, 6, 441-447.	1.1	1
84	External validation of an NTCP model for acute esophageal toxicity in locally advanced NSCLC patients treated with intensity-modulated (chemo-)radiotherapy. Radiotherapy and Oncology, 2018, 129, 249-256.	0.3	8
85	Radiation dose constraints for organs at risk in neuro-oncology; the European Particle Therapy Network consensus. Radiotherapy and Oncology, 2018, 128, 26-36.	0.3	112
86	Prospective data registration and clinical trials for particle therapy in Europe. Radiotherapy and Oncology, 2018, 128, 9-13.	0.3	20
87	Applicability of a prognostic CT-based radiomic signature model trained on stage I-III non-small cell lung cancer in stage IV non-small cell lung cancer. Lung Cancer, 2018, 124, 6-11.	0.9	39
88	18F-fluorodeoxyglucose positron-emission tomography (FDG-PET)-Radiomics of metastatic lymph nodes and primary tumor in non-small cell lung cancer (NSCLC) – A prospective externally validated study. PLoS ONE, 2018, 13, e0192859.	1.1	57
89	Modeling patterns of anatomical deformations in prostate patients undergoing radiation therapy with an endorectal balloon. , 2017, , .		1
90	Individualized early death and long-term survival prediction after stereotactic radiosurgery for brain metastases of non-small cell lung cancer: Two externally validated nomograms. Radiotherapy and Oncology, 2017, 123, 189-194.	0.3	29

#	Article	IF	CITATIONS
91	Nodal recurrence after stereotactic body radiotherapy for early stage non-small cell lung cancer: Incidence and proposed risk factors. Cancer Treatment Reviews, 2017, 56, 8-15.	3.4	33
92	Inclusion of Incidental Radiation Dose to the Cardiac Atria and Ventricles Does Not Improve the Prediction of Radiation Pneumonitis in Advanced-Stage Non-Small Cell Lung Cancer Patients Treated With Intensity Modulated Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2017, 99, 434-441.	0.4	16
93	The clinical target volume in lung, head-and-neck, and esophageal cancer: Lessons from pathological measurement and recurrence analysis. Clinical and Translational Radiation Oncology, 2017, 3, 1-8.	0.9	12
94	P2.05-014 Sites of Recurrent Disease in SCLC Patients Treated with Radiochemotherapy - Is Selective Nodal Irradiation Safe?. Journal of Thoracic Oncology, 2017, 12, S1038-S1039.	0.5	0
95	OA09.06 Metformin Use during Concurrent Chemoradiotherapy for Locally Advanced Non-Small Cell Lung Cancer (NSCLC). Journal of Thoracic Oncology, 2017, 12, S278-S279.	0.5	0
96	Esophageal wall dose-surface maps do not improve the predictive performance of a multivariable NTCP model for acute esophageal toxicity in advanced stage NSCLC patients treated with intensity-modulated (chemo-)radiotherapy. Physics in Medicine and Biology, 2017, 62, 3668-3681.	1.6	10
97	Comparison of toxicity and outcome in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy using IMRT or VMAT. Radiotherapy and Oncology, 2017, 122, 295-299.	0.3	31
98	A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling. Scientific Reports, 2017, 7, 13206.	1.6	163
99	Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiotherapy and Oncology, 2017, 124, 533-540.	0.3	123
100	Therapeutic options to overcome tumor hypoxia in radiation oncology. Clinical and Translational Imaging, 2017, 5, 455-464.	1.1	6
101	Sites of recurrent disease and prognostic factors in SCLC patients treated with radiochemotherapy. Clinical and Translational Radiation Oncology, 2017, 7, 36-42.	0.9	9
102	[18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches. European Journal of Nuclear Medicine and Molecular Imaging, 2017, 44, 8-16.	3.3	20
103	Session 39: Modelling and simulation III. Biomedizinische Technik, 2017, 62, .	0.9	0
104	Impact of robust treatment planning on single- and multi-field optimized plans for proton beam therapy of unilateral head and neck target volumes. Radiation Oncology, 2017, 12, 190.	1.2	25
105	Impact of pre- and early per-treatment FDG-PET based dose-escalation on local tumour control in fractionated irradiated FaDu xenograft tumours. Radiotherapy and Oncology, 2016, 121, 447-452.	0.3	8
106	Prognostic value of blood-biomarkers related to hypoxia, inflammation, immune response and tumour load in non-small cell lung cancer – A survival model with external validation. Radiotherapy and Oncology, 2016, 119, 487-494.	0.3	32
107	Vertebral fractures – An underestimated side-effect in patients treated with radio(chemo)therapy. Radiotherapy and Oncology, 2016, 118, 421-423.	0.3	8
108	The Diagnostic Value of MR Imaging in Determining the Lymph Node Status of Patients with Non–Small Cell Lung Cancer: A Meta-Analysis. Radiology, 2016, 281, 86-98.	3.6	34

#	Article	IF	CITATIONS
109	Is selective nodal irradiation in non-small cell lung cancer still safe when using IMRT? Results of a prospective cohort study. Radiotherapy and Oncology, 2016, 121, 322-327.	0.3	12
110	Benefit of particle therapy in re-irradiation of head and neck patients. Results of a multicentric in silico ROCOCO trial. Radiotherapy and Oncology, 2016, 121, 387-394.	0.3	46
111	PRONTOX – proton therapy to reduce acute normal tissue toxicity in locally advanced non-small-cell lung carcinomas (NSCLC): study protocol for a randomised controlled trial. Trials, 2016, 17, 543.	0.7	20
112	FMISO as a Biomarker for Clinical Radiation Oncology. Recent Results in Cancer Research, 2016, 198, 189-201.	1.8	8
113	Evaluation of tumour hypoxia during radiotherapy using [18F]HX4 PET imaging and blood biomarkers in patients with head and neck cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 2139-2146.	3.3	51
114	Increasing the Therapeutic Ratio of Stereotactic Ablative Radiotherapy by Individualized Isotoxic Dose Prescription. Journal of the National Cancer Institute, 2016, 108, djv305.	3.0	34
115	Emerging Role of MRI for Radiation Treatment Planning in Lung Cancer. Technology in Cancer Research and Treatment, 2016, 15, NP47-NP60.	0.8	12
116	Improved progression free survival for patients with diabetes and locally advanced non-small cell lung cancer (NSCLC) using metformin during concurrent chemoradiotherapy. Radiotherapy and Oncology, 2016, 118, 453-459.	0.3	68
117	Early Weight Loss during Chemoradiotherapy Has a Detrimental Impact on Outcome in NSCLC. Journal of Thoracic Oncology, 2016, 11, 873-879.	0.5	38
118	Multiparametric imaging of patient and tumour heterogeneity in non-small-cell lung cancer: quantification of tumour hypoxia, metabolism and perfusion. European Journal of Nuclear Medicine and Molecular Imaging, 2016, 43, 240-248.	3.3	64
119	Evaluating the use of optimally respiratory gated 18F-FDC-PET in target volume delineation and its influence on radiation doses to the organs at risk in non-small-cell lung cancer patients. Nuclear Medicine Communications, 2016, 37, 66-73.	0.5	8
120	The effect of SUV discretization in quantitative FDG-PET Radiomics: the need for standardized methodology in tumor texture analysis. Scientific Reports, 2015, 5, 11075.	1.6	318
121	PET-based dose painting in non-small cell lung cancer: Comparing uniform dose escalation with boosting hypoxic and metabolically active sub-volumes. Radiotherapy and Oncology, 2015, 116, 281-286.	0.3	64
122	Imaging-Based Treatment Adaptation in Radiation Oncology. Journal of Nuclear Medicine, 2015, 56, 1922-1929.	2.8	27
123	Imaging of tumour hypoxia and metabolism in patients with head and neck squamous cell carcinoma. Acta Oncológica, 2015, 54, 1378-1384.	0.8	17
124	Radiotherapy Combined with the Immunocytokine L19-IL2 Provides Long-lasting Antitumor Effects. Clinical Cancer Research, 2015, 21, 1151-1160.	3.2	79
125	Validation of functional imaging as a biomarker for radiation treatment response. British Journal of Radiology, 2015, 88, 20150014.	1.0	22
126	In response to "Histopathologic validation of 3′-deoxy-3′-18F-fluorothymidine PET for detecting tumour repopulation during fractionated radiotherapy in human FaDu squamous cell carcinoma in nude mice― Radiotherapy and Oncology, 2015, 114, 417-418.	0.3	0

#	Article	IF	CITATIONS
127	A teaching intervention in a contouring dummy runÂimproved target volume delineation in locally advanced non-small cell lung cancer. Strahlentherapie Und Onkologie, 2015, 191, 525-533.	1.0	31
128	PET in the management of locally advanced and metastatic NSCLC. Nature Reviews Clinical Oncology, 2015, 12, 395-407.	12.5	75
129	Multivariable normal-tissue complication modeling of acute esophageal toxicity in advanced stage non-small cell lung cancer patients treated with intensity-modulated (chemo-)radiotherapy. Radiotherapy and Oncology, 2015, 117, 49-54.	0.3	55
130	Weekly kilovoltage cone-beam computed tomography for detection of dose discrepancies during (chemo)radiotherapy for head and neck cancer. Acta Oncológica, 2015, 54, 1483-1489.	0.8	10
131	Is integrated transit planar portal dosimetry able to detect geometric changes in lung cancer patients treated with volumetric modulated arc therapy?. Acta Oncológica, 2015, 54, 1501-1507.	0.8	16
132	Comparison of [18F]-FMISO, [18F]-FAZA and [18F]-HX4 for PET imaging of hypoxia – a simulation study. Acta Oncológica, 2015, 54, 1370-1377.	0.8	61
133	Preclinical Assessment of Efficacy of Radiation Dose Painting Based on Intratumoral FDG-PET Uptake. Clinical Cancer Research, 2015, 21, 5511-5518.	3.2	23
134	Single organ metastatic disease and local disease status, prognostic factors for overall survival in stage IV non-small cell lung cancer: Results from a population-based study. European Journal of Cancer, 2015, 51, 2534-2544.	1.3	50
135	Radiation-induced lung damage – Clinical risk profiles and predictive imaging on their way to risk-adapted individualized treatment planning?. Radiotherapy and Oncology, 2015, 117, 1-3.	0.3	21
136	Rapid Decline of Follicular Lymphoma-Associated Chylothorax after Low Dose Radiotherapy to Retroperitoneal Lymphoma Localization. Case Reports in Hematology, 2014, 2014, 1-5.	0.3	6
137	Patient selection for whole brain radiotherapy (WBRT) in a large lung cancer cohort: Impact of a new Dutch guideline on brain metastases. Acta Oncológica, 2014, 53, 945-951.	0.8	16
138	A qualitative synthesis of the evidence behind elective lymph node irradiation in oesophageal cancer. Radiotherapy and Oncology, 2014, 113, 166-174.	0.3	22
139	Particle Therapy for Non-Small Cell Lung Tumors: Where Do We Stand? A Systematic Review of the Literature. Frontiers in Oncology, 2014, 4, 292.	1.3	54
140	<i>In Vivo</i> Quantification of Hypoxic and Metabolic Status of NSCLC Tumors Using [18F]HX4 and [18F]FDG-PET/CT Imaging. Clinical Cancer Research, 2014, 20, 6389-6397.	3.2	81
141	Semiautomatic methods for segmentation of the proliferative tumour volume on sequential FLT PET/CT images in head and neck carcinomas and their relation to clinical outcome. European Journal of Nuclear Medicine and Molecular Imaging, 2014, 41, 915-924.	3.3	31
142	Stereotactic ablative body radiotherapy combined with immunotherapy: Present status and future perspectives. Cancer Radiotherapie: Journal De La Societe Francaise De Radiotherapie Oncologique, 2014, 18, 391-395.	0.6	23
143	Epigenetics in radiotherapy: Where are we heading?. Radiotherapy and Oncology, 2014, 111, 168-177.	0.3	43
144	Molecular PET imaging for biology-guided adaptive radiotherapy of head and neck cancer. Acta Oncológica, 2013, 52, 1257-1271.	0.8	50

#	Article	IF	CITATIONS
145	Characterization of tumor heterogeneity using dynamic contrast enhanced CT and FDG-PET in non-small cell lung cancer. Radiotherapy and Oncology, 2013, 109, 65-70.	0.3	37
146	â€~Rapid Learning health care in oncology' – An approach towards decision support systems enabling customised radiotherapy'. Radiotherapy and Oncology, 2013, 109, 159-164.	0.3	175
147	Definitive radiation therapy for treatment of laryngeal carcinoma. Strahlentherapie Und Onkologie, 2013, 189, 834-841.	1.0	34
148	Locally advanced verrucous carcinoma of the oral cavity. Strahlentherapie Und Onkologie, 2013, 189, 894-898.	1.0	6
149	Cardiac comorbidity is an independent risk factor for radiation-induced lung toxicity in lung cancer patients. Radiotherapy and Oncology, 2013, 109, 100-106.	0.3	50
150	Hypoxia imaging with [18F]HX4 PET in NSCLC patients: Defining optimal imaging parameters. Radiotherapy and Oncology, 2013, 109, 58-64.	0.3	81
151	¹⁸ F-FLT PET During Radiotherapy or Chemoradiotherapy in Head and Neck Squamous Cell Carcinoma Is an Early Predictor of Outcome. Journal of Nuclear Medicine, 2013, 54, 532-540.	2.8	111
152	First clinical results of adaptive radiotherapy based on 3D portal dosimetry for lung cancer patients with atelectasis treated with volumetric-modulated arc therapy (VMAT). Acta Oncológica, 2013, 52, 1484-1489.	0.8	36
153	Correlation between tumor oxygenation and18F-fluoromisonidazole PET data simulated based on microvessel images. Acta OncolA ³ gica, 2013, 52, 1308-1313.	0.8	15
154	Prognostic value of metabolic metrics extracted from baseline positron emission tomography images in non-small cell lung cancer. Acta Oncológica, 2013, 52, 1398-1404.	0.8	44
155	¹⁸ F-FDG PET Early Response Evaluation of Locally Advanced Non–Small Cell Lung Cancer Treated with Concomitant Chemoradiotherapy. Journal of Nuclear Medicine, 2013, 54, 1528-1534.	2.8	104
156	Balancing Radiation Pneumonitis Versus Locoregional Tumor Control in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, e35-e36.	0.5	0
157	Balancing Radiation Pneumonitis Versus Locoregional Tumor Control in Non–Small-Cell Lung Cancer. Journal of Thoracic Oncology, 2013, 8, e47.	0.5	0
158	Modelling and simulation of the influence of acute and chronic hypoxia on [¹⁸ F]fluoromisonidazole PET imaging. Physics in Medicine and Biology, 2012, 57, 1675-1684.	1.6	30
159	Individualized Dose Prescription for Hypofractionation in Advanced Non-Small-Cell Lung Cancer Radiotherapy: An in silico Trial. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1596-1602.	0.4	31
160	3′-Deoxy-3′- ¹⁸ F-Fluorothymidine PET–Derived Proliferative Volume Predicts Overall Survival in High-Grade Glioma Patients. Journal of Nuclear Medicine, 2012, 53, 1904-1910.	2.8	44
161	Treatment outcome and toxicity of intensity-modulated (chemo) radiotherapy in stage III non-small cell lung cancer patients. Radiation Oncology, 2012, 7, 150.	1.2	33
162	Modelling and simulation of [18F]fluoromisonidazole dynamics based on histology-derived microvessel maps. Physics in Medicine and Biology, 2011, 56, 2045-2057.	1.6	54

#	Article	IF	CITATIONS
163	Early identification of antigen-specific immune responses in vivo by [¹⁸ F]-labeled 3′-fluoro-3′-deoxy-thymidine ([¹⁸ F]FLT) PET imaging. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18396-18399.	3.3	65
164	Histopathologic Validation of 3â€2-Deoxy-3â€2- ¹⁸ F-Fluorothymidine PET in Squamous Cell Carcinoma of the Oral Cavity. Journal of Nuclear Medicine, 2010, 51, 713-719.	2.8	23
165	PET of Hypoxia with ⁸⁹ Zr-Labeled cG250-F(ab′) ₂ in Head and Neck Tumors. Journal of Nuclear Medicine, 2010, 51, 1076-1083.	2.8	98
166	Innovations in Radiotherapy Planning of Head and Neck Cancers: Role of PET. Journal of Nuclear Medicine, 2010, 51, 66-76.	2.8	73
167	Correlation of Segmented Metabolic Tumor Volume with Outcome - Letter. Clinical Cancer Research, 2010, 16, 1968-1968.	3.2	Ο
168	¹⁸ F-FLT PET/CT for Early Response Monitoring and Dose Escalation in Oropharyngeal Tumors. Journal of Nuclear Medicine, 2010, 51, 866-874.	2.8	147
169	Clinical evidence on PET–CT for radiation therapy planning in head and neck tumours. Radiotherapy and Oncology, 2010, 96, 328-334.	0.3	88
170	18F-FDG and 18F-FLT Do Not Discriminate Between Reactive and Metastatic Lymph Nodes in Oral Cancer. Journal of Nuclear Medicine, 2009, 50, 490-491.	2.8	11
171	"Combined 18F-FDG-PET/CT Imaging in Radiotherapy Target Delineation for Head-and-Neck Cancerâ€+ In Regard to Guido et al. (Int J Radiat Oncol Biol Phys 2009;73:759–763). International Journal of Radiation Oncology Biology Physics, 2009, 74, 1629.	0.4	1
172	Correlation of [18F]FMISO autoradiography and pimonodazole immunohistochemistry in human head and neck carcinoma xenografts. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35, 1803-1811.	3.3	85
173	Intratumoral Spatial Distribution of Hypoxia and Angiogenesis Assessed by ¹⁸ F-FAZA and ¹²⁵ I-Gluco-RGD Autoradiography. Journal of Nuclear Medicine, 2008, 49, 1732.1-1732.	2.8	2
174	18F-FLT PET Does Not Discriminate Between Reactive and Metastatic Lymph Nodes in Primary Head and Neck Cancer Patients. Journal of Nuclear Medicine, 2007, 48, 726-735.	2.8	142
175	Imaging hypoxia after oxygenation-modification: Comparing [18F]FMISO autoradiography with pimonidazole immunohistochemistry in human xenograft tumors. Radiotherapy and Oncology, 2006, 80, 157-164.	0.3	72
176	Comparison of different methods of CAIX quantification in relation to hypoxia in three human head and neck tumor lines. Radiotherapy and Oncology, 2005, 76, 194-199.	0.3	56