Stephen J Torr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179288/publications.pdf

Version: 2024-02-01

90 papers 2,837 citations

236925 25 h-index 214800 47 g-index

100 all docs

100 docs citations

100 times ranked 2299 citing authors

#	Article	IF	CITATIONS
1	The importance of vector control for the control and elimination of vector-borne diseases. PLoS Neglected Tropical Diseases, 2020, 14, e0007831.	3.0	345
2	Spatial repellents: from discovery and development to evidence-based validation. Malaria Journal, 2012, 11, 164.	2.3	210
3	Factors that influence the prevalence of acaricide resistance and tick-borne diseases. Veterinary Parasitology, 2004, 125, 163-181.	1.8	119
4	Tsetse Control and Gambian Sleeping Sickness; Implications for Control Strategy. PLoS Neglected Tropical Diseases, 2015, 9, e0003822.	3.0	108
5	Adding tsetse control to medical activities contributes to decreasing transmission of sleeping sickness in the Mandoul focus (Chad). PLoS Neglected Tropical Diseases, 2017, 11, e0005792.	3.0	92
6	Reducing Human-Tsetse Contact Significantly Enhances the Efficacy of Sleeping Sickness Active Screening Campaigns: A Promising Result in the Context of Elimination. PLoS Neglected Tropical Diseases, 2015, 9, e0003727.	3.0	91
7	Quantitative evaluation of the strategy to eliminate human African trypanosomiasis in the Democratic Republic of Congo. Parasites and Vectors, 2015, 8, 532.	2.5	86
8	Quantitative analyses and modelling to support achievement of the 2020 goals for nine neglected tropical diseases. Parasites and Vectors, 2015, 8, 630.	2.5	80
9	Towards a rational policy for dealing with tsetse. Trends in Parasitology, 2005, 21, 537-541.	3.3	72
10	Improving the Cost-Effectiveness of Artificial Visual Baits for Controlling the Tsetse Fly Glossina fuscipes fuscipes. PLoS Neglected Tropical Diseases, 2009, 3, e474.	3.0	71
11	Towards an Optimal Design of Target for Tsetse Control: Comparisons of Novel Targets for the Control of Palpalis Group Tsetse in West Africa. PLoS Neglected Tropical Diseases, 2011, 5, e1332.	3.0	63
12	Improving the Cost-Effectiveness of Visual Devices for the Control of Riverine Tsetse Flies, the Major Vectors of Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2011, 5, e1257.	3.0	63
13	Prospects for Developing Odour Baits To Control Glossina fuscipes spp., the Major Vector of Human African Trypanosomiasis. PLoS Neglected Tropical Diseases, 2009, 3, e435.	3.0	61
14	Modeling the Control of Trypanosomiasis Using Trypanocides or Insecticide-Treated Livestock. PLoS Neglected Tropical Diseases, 2012, 6, e1615.	3.0	58
15	Is vector control needed to eliminate gambiense human African trypanosomiasis?. Frontiers in Cellular and Infection Microbiology, 2013, 3, 33.	3.9	56
16	Tsetse Control and the Elimination of Gambian Sleeping Sickness. PLoS Neglected Tropical Diseases, 2016, 10, e0004437.	3.0	55
17	Predicting the Impact of Intervention Strategies for Sleeping Sickness in Two High-Endemicity Health Zones of the Democratic Republic of Congo. PLoS Neglected Tropical Diseases, 2017, 11, e0005162.	3.0	53
18	Costs Of Using "Tiny Targets―to Control Glossina fuscipes fuscipes, a Vector of Gambiense Sleeping Sickness in Arua District of Uganda. PLoS Neglected Tropical Diseases, 2015, 9, e0003624.	3.0	50

#	Article	IF	Citations
19	Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya. Scientific Reports, 2020, 10, 4518.	3.3	49
20	Investigating the Contribution of Peri-domestic Transmission to Risk of Zoonotic Malaria Infection in Humans. PLoS Neglected Tropical Diseases, 2016, 10, e0005064.	3.0	47
21	Exploiting Anopheles responses to thermal, odour and visual stimuli to improve surveillance and control of malaria. Scientific Reports, 2017, 7, 17283.	3.3	44
22	Climate change and African trypanosomiasis vector populations in Zimbabwe's Zambezi Valley: A mathematical modelling study. PLoS Medicine, 2018, 15, e1002675.	8.4	44
23	Optimizing the Colour and Fabric of Targets for the Control of the Tsetse Fly Glossina fuscipes fuscipes. PLoS Neglected Tropical Diseases, 2012, 6, e1661.	3.0	42
24	Using Molecular Data for Epidemiological Inference: Assessing the Prevalence of Trypanosoma brucei rhodesiense in Tsetse in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 2012, 6, e1501.	3.0	37
25	Impact of tiny targets on Glossina fuscipes quanzensis, the primary vector of human African trypanosomiasis in the Democratic Republic of the Congo. PLoS Neglected Tropical Diseases, 2020, 14, e0008270.	3.0	34
26	Explaining the Host-Finding Behavior of Blood-Sucking Insects: Computerized Simulation of the Effects of Habitat Geometry on Tsetse Fly Movement. PLoS Neglected Tropical Diseases, 2014, 8, e2901.	3.0	29
27	Are herders protected by their herds? An experimental analysis of zooprophylaxis against the malaria vector Anopheles arabiensis. Malaria Journal, 2011, 10, 68.	2.3	28
28	Trypa-NO! contributes to the elimination of gambiense human African trypanosomiasis by combining tsetse control with "screen, diagnose and treat―using innovative tools and strategies. PLoS Neglected Tropical Diseases, 2020, 14, e0008738.	3.0	28
29	Mathematical Models of Human African Trypanosomiasis Epidemiology. Advances in Parasitology, 2015, 87, 53-133.	3.2	27
30	Tsetse Fly (G.f. fuscipes) Distribution in the Lake Victoria Basin of Uganda. PLoS Neglected Tropical Diseases, 2015, 9, e0003705.	3.0	26
31	Exploring the potential of using cattle for malaria vector surveillance and control: a pilot study in western Kenya. Parasites and Vectors, 2017, 10, 18.	2.5	26
32	Delivering â€~tiny targets' in a remote region of southern Chad: a cost analysis of tsetse control in the Mandoul sleeping sickness focus. Parasites and Vectors, 2020, 13, 419.	2.5	25
33	Host Decoy Trap (HDT) with cattle odour is highly effective for collection of exophagic malaria vectors. Parasites and Vectors, 2018, 11, 533.	2.5	24
34	Illuminating the Prevalence of Trypanosoma brucei s.l. in Glossina Using LAMP as a Tool for Xenomonitoring. PLoS Neglected Tropical Diseases, 2016, 10, e0004441.	3.0	24
35	Transmission Dynamics of Rhodesian Sleeping Sickness at the Interface of Wildlife and Livestock Areas. Trends in Parasitology, 2016, 32, 608-621.	3.3	23
36	The development of high resolution maps of tsetse abundance to guide interventions against human African trypanosomiasis in northern Uganda. Parasites and Vectors, 2018, 11, 340.	2.5	23

#	Article	IF	CITATIONS
37	Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC). PLoS Neglected Tropical Diseases, 2020, 14, e0007976.	3.0	23
38	Cryptic Diversity within the Major Trypanosomiasis Vector Glossina fuscipes Revealed by Molecular Markers. PLoS Neglected Tropical Diseases, 2011, 5, e1266.	3.0	22
39	Is the Even Distribution of Insecticide-Treated Cattle Essential for Tsetse Control? Modelling the Impact of Baits in Heterogeneous Environments. PLoS Neglected Tropical Diseases, 2011, 5, e1360.	3.0	21
40	Improved persistence of insecticide deposits on targets for controlling Glossina pallidipes (Diptera:) Tj ETQq0 0	0 rgBT /0\	erlock 10 Tf 5
41	Electric nets and sticky materials for analysing oviposition behaviour of gravid malaria vectors. Malaria Journal, 2012, 11, 374.	2.3	19
42	Community Acceptance of Tsetse Control Baits: A Qualitative Study in Arua District, North West Uganda. PLoS Neglected Tropical Diseases, 2013, 7, e2579.	3.0	19
43	Analysing the oviposition behaviour of malaria mosquitoes: design considerations for improving two-choice egg count experiments. Malaria Journal, 2015, 14, 250.	2.3	18
44	Geostatistical models using remotelyâ€sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti, Tanzania. Journal of Applied Ecology, 2018, 55, 1997-2007.	4.0	18
45	Odour-baited targets to control New World screwworm, <i>Cochliomyia hominivorax</i> (Diptera:) Tj ETQq1 1	0.784314	rgBT/Overloc
46	Pharma to farmer: field challenges of optimizing trypanocide use in African animal trypanosomiasis. Trends in Parasitology, 2021, 37, 831-843.	3.3	17
47	Evaluation of electric nets as means to sample mosquito vectors host-seeking on humans and primates. Parasites and Vectors, 2017, 10, 338.	2.5	16
48	Gambian human African trypanosomiasis in North West Uganda. Are we on course for the 2020 target?. PLoS Neglected Tropical Diseases, 2019, 13, e0007550.	3.0	16
49	Wing length and host location in tsetse (Glossina spp.): implications for control using stationary baits. Parasites and Vectors, 2019, 12, 24.	2.5	16
50	Use of vector control to protect people from sleeping sickness in the focus of Bonon (Côte d'Ivoire). PLoS Neglected Tropical Diseases, 2021, 15, e0009404.	3.0	16
51	Update of transmission modelling and projections of gambiense human African trypanosomiasis in the Mandoul focus, Chad. Infectious Diseases of Poverty, 2022, 11, 11.	3.7	16
52	Infectious disease and health systems modelling for local decision making to control neglected tropical diseases. BMC Proceedings, 2015, 9, S6.	1.6	15
53	Pyrethroid Treatment of Cattle for Tsetse Control: Reducing Its Impact on Dung Fauna. PLoS Neglected Tropical Diseases, 2015, 9, e0003560.	3.0	15
54	Effects of maternal age and stress on offspring quality in a viviparous fly. Ecology Letters, 2021, 24, 2113-2122.	6.4	15

#	Article	IF	CITATIONS
55	Optimal Strategies for Controlling Riverine Tsetse Flies Using Targets: A Modelling Study. PLoS Neglected Tropical Diseases, 2015, 9, e0003615.	3.0	14
56	Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe. Parasites and Vectors, 2020, 13, 526.	2.5	14
57	Quantifying Heterogeneity in Host-Vector Contact: Tsetse (Glossina swynnertoni and G. pallidipes) Host Choice in Serengeti National Park, Tanzania. PLoS ONE, 2016, 11, e0161291.	2.5	14
58	Potential vectors of equine arboviruses in the UK. Veterinary Record, 2017, 180, 19-19.	0.3	13
59	Evidence of the absence of human African trypanosomiasis in two northern districts of Uganda: Analyses of cattle, pigs and tsetse flies for the presence of Trypanosoma brucei gambiense. PLoS Neglected Tropical Diseases, 2020, 14, e0007737.	3.0	13
60	We Remember… Elders' Memories and Perceptions of Sleeping Sickness Control Interventions in West Nile, Uganda. PLoS Neglected Tropical Diseases, 2016, 10, e0004745.	3.0	10
61	Comment on Barclay and Vreysen: Published dynamic population model for tsetse cannot fit field data. Population Ecology, 2011, 53, 413-415.	1.2	9
62	Assessing the effect of insecticide-treated cattle on tsetse abundance and trypanosome transmission at the wildlife-livestock interface in Serengeti, Tanzania. PLoS Neglected Tropical Diseases, 2020, 14, e0008288.	3.0	9
63	Quantifying geographic accessibility to improve efficiency of entomological monitoring. PLoS Neglected Tropical Diseases, 2020, 14, e0008096.	3.0	9
64	Efficacy of Electrocuting Devices to Catch Tsetse Flies (Glossinidae) and Other Diptera. PLoS Neglected Tropical Diseases, 2015, 9, e0004169.	3.0	8
65	Baited-boats: an innovative way to control riverine tsetse, vectors of sleeping sickness in West Africa. Parasites and Vectors, 2015, 8, 236.	2.5	7
66	Evaluation of the influence of electric nets on the behaviour of oviposition site seeking Anopheles gambiae s.s. Parasites and Vectors, 2014, 7, 272.	2.5	6
67	Optimising targets for tsetse control: Taking a fly's-eye-view to improve the colour of synthetic fabrics. PLoS Neglected Tropical Diseases, 2019, 13, e0007905.	3.0	6
68	The cost of tsetse control using â€ʾTiny Targets' in the sleeping sickness endemic forest area of Bonon in CÃ́te d'Ivoire: Implications for comparing costs across different settings. PLoS Neglected Tropical Diseases, 2022, 16, e0010033.	3.0	6
69	Fit for purpose: do we have the right tools to sustain NTD elimination?. BMC Proceedings, 2015, 9, S5.	1.6	5
70	Mass Drug Administration and beyond: how can we strengthen health systems to deliver complex interventions to eliminate neglected tropical diseases?. BMC Proceedings, 2015, 9, S7.	1.6	5
71	Estimating the impact of Tiny Targets in reducing the incidence of Gambian sleeping sickness in the North-west Uganda focus. Parasites and Vectors, 2021, 14, 410.	2.5	5
72	Scaling up of tsetse control to eliminate Gambian sleeping sickness in northern Uganda. PLoS Neglected Tropical Diseases, 2022, 16, e0010222.	3.0	5

#	Article	IF	Citations
73	Antigenic Diversity in Theileria parva Populations From Sympatric Cattle and African Buffalo Analyzed Using Long Read Sequencing. Frontiers in Genetics, 2021, 12, 684127.	2.3	4
74	A cross-sectional survey to establish Theileria parva prevalence and vector control at the wildlife-livestock interface, Northern Tanzania. Preventive Veterinary Medicine, 2021, 196, 105491.	1.9	4
75	Feasibility of community-based control of tsetse: AÂpilot project using Tiny Targets in the Democratic Republic of Congo. PLoS Neglected Tropical Diseases, 2020, 14, e0008696.	3.0	4
76	Spatial analysis of G.f.fuscipes abundance in Uganda using Poisson and Zero-Inflated Poisson regression models. PLoS Neglected Tropical Diseases, 2021, 15, e0009820.	3.0	4
77	Fragile and conflict affected states: report from the Consultation on Collaboration for Applied Health Research and Delivery. Conflict and Health, 2014, 8, .	2.7	3
78	Sleeping sickness in the Democratic Republic of the Congo. Lancet Neurology, The, 2019, 18, 988-989.	10.2	3
79	Optimising passive surveillance of a neglected tropical disease in the era of elimination: A modelling study. PLoS Neglected Tropical Diseases, 2021, 15, e0008599.	3.0	3
80	A pilot study demonstrating the identification of Trypanosoma brucei gambiense and T. b. rhodesiense in vectors using a multiplexed high-resolution melt qPCR. PLoS Neglected Tropical Diseases, 2020, 14, e0008308.	3.0	3
81	The seasonal dynamics and biting behavior of potential Anopheles vectors of Plasmodium knowlesi in Palawan, Philippines. Parasites and Vectors, 2021, 14, 357.	2.5	2
82	Environmental mutations in the Campo focus challenge elimination of sleeping sickness transmission in Cameroon. Medical and Veterinary Entomology, 2022, , .	1.5	2
83	Evaluation of improved coloured targets to control riverine tsetse in East Africa: A Bayesian approach. PLoS Neglected Tropical Diseases, 2021, 15, e0009463.	3.0	1
84	A gene expression panel for estimating age in males and females of the sleeping sickness vector Glossina morsitans. PLoS Neglected Tropical Diseases, 2021, 15, e0009797.	3.0	1
85	Host-species diversity and the transmission of vector-borne disease in low-income countries. , 2018, , .		0
86	†Where are the dead flies!': perceptions of local communities towards the deployment of Tiny Targets to control tsetse in the Democratic Republic of the Congo. BMJ Global Health, 2022, 7, e006879.	4.7	0
87	Title is missing!. , 2020, 14, e0008270.		0
88	Title is missing!. , 2020, 14, e0008270.		0
89	Title is missing!. , 2020, 14, e0008270.		0
90	Title is missing!. , 2020, 14, e0008270.		0