
Nagaraju Vodnala

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2179071/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Organocatalytic Decarboxylation and Dual C(sp ³)â^'H Bond Functionalization Toward Facile Access to Divergent 2,6â€Điarylpyridines. Asian Journal of Organic Chemistry, 2022, 11, .	2.7	3
2	C _{sp} –C _{sp} bond cleavage and fragment coupling: a transition metal-free "extrusion and recombination―approach towards synthesis of 1,2-diketones. Organic Chemistry Frontiers, 2021, 8, 5389-5396.	4.5	4
3	Transition-Metal-Free Transfer Hydrogenative Cascade Reaction of Nitroarenes with Amines/Alcohols: Redox-Economical Access to Benzimidazoles. Journal of Organic Chemistry, 2021, 86, 14597-14607.	3.2	10
4	Decarboxylative cyclization of amino acids towards the Regioselective synthesis of 2,4-diarylpyridines via relay Fe(III)/In(III)-catalysis. Tetrahedron Letters, 2020, 61, 151495.	1.4	9
5	Reagent-Controlled Divergent Synthesis of 2-Amino-1,3-Benzoxazines and 2-Amino-1,3-Benzothiazines. Journal of Organic Chemistry, 2020, 85, 380-396.	3.2	20
6	An organocatalytic C–C bond cleavage approach: a metal-free and peroxide-free facile method for the synthesis of amide derivatives. New Journal of Chemistry, 2020, 44, 20940-20944.	2.8	11
7	Recent Advances in Pyridineâ€Based Organocatalysis and its Application towards Valuable Chemical Transformations. ChemistrySelect, 2020, 5, 8745-8758.	1.5	28
8	Copperâ€Catalyzed [2+2+1+1] Annulation for the Regioselective Synthesis of 2,6â€Diarylpyridines <i>via</i> C1â€Insertion and Subsequent Cyclization. ChemistrySelect, 2020, 5, 10144-10148.	1.5	10
9	A Facile Câ€H Insertion Strategy using Combination of HFIP and Isocyanides: Metalâ€Free Access to Azole Derivatives. Asian Journal of Organic Chemistry, 2020, 9, 1793-1797.	2.7	7
10	Comprehensive Strategies for the Synthesis of Isoquinolines: Progress Since 2008. Advanced Synthesis and Catalysis, 2020, 362, 4896-4990.	4.3	61
11	Transition-metal-free variant of Glaser- and Cadiot-Chodkiewicz-type Coupling: Benign access to diverse 1,3-diynes and related molecules. Tetrahedron Letters, 2020, 61, 151775.	1.4	17
12	Aminoâ€Acidâ€Mediated Aerobic Oxidation of Organoborons for the Synthesis of Phenolic Derivatives Using Single Electron Transfer. ChemistrySelect, 2020, 5, 2419-2423.	1.5	6
13	Niacin as a Potent Organocatalyst towards the Synthesis of Quinazolines Using Nitriles as C–N Source. European Journal of Organic Chemistry, 2020, 2020, 803-814.	2.4	18
14	Mo(VI)-catalyzed Synthesis of 2-Aryl-2 <i>H</i> -indazoles Using Pinacol Mediated Deoxygenation of Nitroaromatics. Chemistry Letters, 2019, 48, 1258-1261.	1.3	6
15	Goldâ€Catalyzed Facile Protocol towards the Efficient Access of Azetidinyl Esters, βâ€Amino Esters and δâ€Amino Esters using Simple Substrates. Asian Journal of Organic Chemistry, 2019, 8, 1947-1947.	2.7	0
16	Pd-Catalyzed Decarboxylation and Dual C(sp ³)–H Functionalization Protocols for the Synthesis of 2,4-Diarylpyridines. Journal of Organic Chemistry, 2019, 84, 5005-5020.	3.2	21
17	Copperâ€Catalyzed Siteâ€Selective Oxidative Câ^C Bond Cleavage of Simple Ketones for the Synthesis of Anilides and Paracetamol. Advanced Synthesis and Catalysis, 2019, 361, 135-145.	4.3	26
18	Organocatalytic oxidative synthesis of C2-functionalized benzoxazoles, naphthoxazoles, benzothiazoles and benzimidazoles. Tetrahedron Letters, 2019, 60, 223-229.	1.4	25

Nagaraju Vodnala

#	Article	IF	CITATIONS
19	The facile and efficient organocatalytic platform for accessing 1,2,4-selenadiazoles and thiadiazoles under aerobic conditions. Tetrahedron Letters, 2018, 59, 904-908.	1.4	16
20	Facile Protocols towards C2-Arylated Benzoxazoles using Fe(III)-Catalyzed C(sp 2-H) Functionalization and Metal-Free Domino Approach. Synlett, 2018, 29, 1469-1478.	1.8	7
21	Divergent Synthesis of Quinazolines Using Organocatalytic Domino Strategies under Aerobic Conditions. European Journal of Organic Chemistry, 2018, 2018, 4628-4638.	2.4	23
22	Efficient Syntheses of Diverse N-Heterocycles: The Molybdenum(VI)-Catalyzed Reductive Cyclization of Nitroarenes using Pinacol as a DeoxygenatingÂ-Agent. SynOpen, 2018, 02, 0138-0144.	1.7	4
23	Novel Domino Routes for the Synthesis of Nâ€Heterocycles via Reductive Cyclization of βâ€{ <i>N</i> â€2â€Nitroaryl)â€Î±,βâ€unsaturated Ketones. ChemistrySelect, 2016, 1, 5784-5788.	1.5	4
24	Pd-catalyzed domino reactions of nitroaromatics: A surrogate access towards the saturated N-heterocycles. Tetrahedron Letters, 2016, 57, 5695-5699.	1.4	9