Qing Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2178896/publications.pdf

Version: 2024-02-01

201385 214527 4,189 47 27 47 h-index citations g-index papers 48 48 48 7023 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	MoS ₂ /Graphene Cocatalyst for Efficient Photocatalytic H ₂ Evolution under Visible Light Irradiation. ACS Nano, 2014, 8, 7078-7087.	7.3	885
2	Reduced TiO2 nanotube arrays for photoelectrochemical water splitting. Journal of Materials Chemistry A, 2013, 1, 5766.	5.2	507
3	High Efficient Photocatalytic Degradation of p-Nitrophenol on a Unique Cu ₂ O/TiO ₂ p-n Heterojunction Network Catalyst. Environmental Science & Environmental & En	4.6	448
4	Photocatalytic Reduction of Carbon Dioxide by Hydrous Hydrazine over Au–Cu Alloy Nanoparticles Supported on SrTiO ₃ /TiO ₂ Coaxial Nanotube Arrays. Angewandte Chemie - International Edition, 2015, 54, 841-845.	7.2	223
5	Cobalt nickel boride as an active electrocatalyst for water splitting. Journal of Materials Chemistry A, 2017, 5, 12379-12384.	5.2	214
6	Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSe _{<i>x</i>} Te _{1â^²<i>x</i>} /TiO ₂ Nanotube Structure-Based Label-Free Immunosensor. Analytical Chemistry, 2010, 82, 9749-9754.	3.2	168
7	Fabrication of PbS Nanoparticle-Sensitized TiO ₂ Nanotube Arrays and Their Photoelectrochemical Properties. ACS Applied Materials & Samp; Interfaces, 2011, 3, 746-749.	4.0	161
8	In situ synthesis of ordered mesoporous Co-doped TiO ₂ and its enhanced photocatalytic activity and selectivity for the reduction of CO ₂ . Journal of Materials Chemistry A, 2015, 3, 9491-9501.	5.2	155
9	Effect of Interlayer Spacing on the Activity of Layered Manganese Oxide Bilayer Catalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society, 2017, 139, 1863-1870.	6.6	144
10	A ternary hybrid CdS/Pt–TiO2 nanotube structure for photoelectrocatalytic bactericidal effects on Escherichia Coli. Biomaterials, 2010, 31, 3317-3326.	5.7	121
11	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie - International Edition, 2016, 55, 10381-10385.	7.2	112
12	An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry, 2008, 74, 62-65.	2.4	106
13	Study of cobalt boride-derived electrocatalysts for overall water splitting. International Journal of Hydrogen Energy, 2018, 43, 6076-6087.	3.8	86
14	Plasmonic Janusâ€Composite Photocatalyst Comprising Au and C–TiO ₂ for Enhanced Aerobic Oxidation over a Broad Visibleâ€Light Range. Advanced Functional Materials, 2014, 24, 7754-7762.	7.8	83
15	Highly efficient and stable photocatalytic reduction of CO ₂ to CH ₄ over Ru loaded NaTaO ₃ . Chemical Communications, 2015, 51, 7645-7648.	2.2	81
16	Copper-Intercalated Birnessite as a Water Oxidation Catalyst. Langmuir, 2015, 31, 12807-12813.	1.6	69
17	Preferential Adsorption of Hydroxide Ions onto Partially Crystalline NiFe-Layered Double Hydroxides Leads to Efficient and Selective OER in Alkaline Seawater. ACS Applied Energy Materials, 2021, 4, 4630-4637.	2.5	67
18	Boron enhances oxygen evolution reaction activity over Ni foam-supported iron boride nanowires. Journal of Materials Chemistry A, 2020, 8, 13638-13645.	5.2	61

#	Article	IF	CITATIONS
19	Redox properties of birnessite from a defect perspective. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 9523-9528.	3.3	50
20	Dual-Mode Electrochemical Immunoassay for Insulin Based on Cu ₇ S ₄ –Au as a Double Signal Indicator. ACS Applied Materials & Samp; Interfaces, 2018, 10, 38791-38798.	4.0	46
21	A photoelectrochemical immunosensor for benzo[a]pyrene detection amplified by bifunctional gold nanoparticles. Chemical Communications, 2011, 47, 12509.	2.2	42
22	Ultrasensitive Photoelectrochemical Biosensing Platform for Detecting N-Terminal Pro-brain Natriuretic Peptide Based on SnO ₂ /SnS ₂ /mpg-C ₃ N ₄ Amplified by PbS/SiO ₂ . ACS Applied Materials & Detecting N-Terminal Pro-brain Natriuretic Peptide Based on SnO ₄ .	4.0	40
23	Kinetics of catalytic decomposition of hydrous hydrazine over CeO 2 -supported bimetallic Ni–Pt nanocatalysts. International Journal of Hydrogen Energy, 2017, 42, 5684-5693.	3.8	34
24	Cobaltâ€Tungstenâ€Boron as an Active Electrocatalyst for Water Electrolysis. ChemistrySelect, 2017, 2, 6187-6193.	0.7	33
25	The effect of magnetic field on the catalytic graphitization of phenolic resin in the presence of Fe–Ni. Carbon, 2009, 47, 3233-3237.	5.4	28
26	Nickel Confined in the Interlayer Region of Birnessite: an Active Electrocatalyst for Water Oxidation. Angewandte Chemie, 2016, 128, 10537-10541.	1.6	28
27	Immunoassay for Cardiac Troponin I with Fluorescent Signal Amplification by Hydrolyzed Coumarin Released from a Metal–Organic Framework. ACS Applied Nano Materials, 2019, 2, 7170-7177.	2.4	27
28	Electrochemiluminescence of luminol on Ti/TiO2 NT electrode and its application for pentachlorophenol detection. Analyst, The, 2010, 135, 2806.	1.7	19
29	Fabrication of Zn _{<i>x</i>} Cd _{1â€"<i>x</i>} Se Nanocrystal-Sensitized TiO ₂ Nanotube Arrays and Their Photoelectrochemical Properties. Journal of Physical Chemistry C, 2012, 116, 16885-16892.	1.5	19
30	Solar Cells Constructed with Polythiophene Thin Films Grown along Tethered Thiophene–Dye Conjugates via Photoelectrochemical Polymerization. ACS Applied Materials & Diterfaces, 2019, 11, 18755-18762.	4.0	16
31	Photo-irradiation tunes highly active sites over \hat{l}^2 -Ni(OH) ₂ nanosheets for the electrocatalytic oxygen evolution reaction. Chemical Communications, 2021, 57, 9060-9063.	2.2	12
32	Regenerable and high-throughput surface plasmon resonance assay for rapid screening of anti-SARS-CoV-2 antibody in serum samples. Analytica Chimica Acta, 2022, 1208, 339830.	2.6	12
33	Electrochemical quartz crystal impedance study on the electrodeposition of LiOH onto a gold electrode in acetonitrile containing LiClO4·3H2O and its application in preparing a Pt-plated porous polypyrrole thin film for the catalytic electrooxidation of methanol. Journal of Electroanalytical Chemistry, 2006, 591, 74-84.	1.9	11
34	Zinc-Based Materials for Photoelectrochemical Reduction of Carbon Dioxide. Energy & Samp; Fuels, 2022, 36, 11380-11393.	2.5	11
35	Rapid and regenerable surface plasmon resonance determinations of biomarker concentration and biomolecular interaction based on tris-nitrilotriacetic acid chips. Analytica Chimica Acta, 2021, 1170, 338625.	2.6	10
36	Ratiometric fluorescence immunoassay based on MnO ₂ â€" <i>>o</i> -phenylenediamineâ€"fluorescent carbon nanodots for the detection of <i>î±</i> -fetoprotein <i>via</i> fluorescence resonance energy transfer. New Journal of Chemistry, 2022, 46, 1120-1126.	1.4	10

#	Article	IF	CITATIONS
37	In SituATR-FTIR and UV-Visible Spectroscopy Study of Photocatalytic Oxidation of Ethanol over TiO2Nanotubes. Analytical Letters, 2011, 44, 1114-1125.	1.0	9
38	A dual-modal colorimetric and photothermal assay for glutathione based on MnO2 nanosheets synthesized with eco-friendly materials. Analytical and Bioanalytical Chemistry, 2020, 412, 8443-8450.	1.9	8
39	Bi, Fe, and Ti ternary co-doped ZrO2 nanocomposites as a mass spectrometry matrix for the determination of bisphenol A and tetrabromobisphenol A in tea. Mikrochimica Acta, 2020, 187, 582.	2.5	7
40	Effects of doping methods and dopant sizes on the performance of solar cells constructed with anchor-guided photoelectrochemical polymerization of thiophene. Electrochimica Acta, 2020, 330, 135250.	2.6	5
41	The Photoelectric Performances of TiO2Nanotube Arrays-Sensitized with Organometallic Complexes. Analytical Letters, 2011, 44, 1371-1380.	1.0	4
42	Efficient photochemical oxygen generation from water by phosphorus-doped H ₂ MoO ₅ . Chemical Communications, 2014, 50, 12185-12188.	2.2	4
43	Interference-free photoelectrochemical immunoassays using carboxymethylated dextran-coated and gold-modified TiO2 nanotube arrays. Analytical and Bioanalytical Chemistry, 2021, 413, 4847-4854.	1.9	4
44	Serpentine Ni ₃ Ge ₂ O ₅ (OH) ₄ Nanosheets Grow on Porous Mo ₂ N for an Efficient Oxygen Evolution Reaction. Energy & Description Reaction Reaction. Energy & Description Reaction R	2.5	4
45	Electrocatalytic oxygen and hydrogen evolution reactions at Ni3B/Fe2O3 nanotube arrays under visible light radiation. Catalysis Science and Technology, 2020, 10, 8305-8313.	2.1	2
46	Click Preparation of Triazole-Bridged Aggregation-Induced Emission Aromatic Acid Probe for the Selective Determination of Aluminium Ion. Analytical Letters, 2021, 54, 481-491.	1.0	2
47	Study on the Electrodeposition of Hydroxides in Hydrated Perchlorate + Organic Solvent Systems Using EQCM. Acta Physico-chimica Sinica, 2006, 22, 1361-1366.	0.6	0