Jinglei Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2178819/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Advances in electrospun scaffolds for meniscus tissue engineering and regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 923-949.	1.6	10
2	Transcutaneous tumor vaccination combined with anti-programmed death-1 monoclonal antibody treatment produces a synergistic antitumor effect. Acta Biomaterialia, 2022, 140, 247-260.	4.1	25
3	Delivery of mRNA vaccines and anti-PDL1 siRNA through non-invasive transcutaneous route effectively inhibits tumor growth. Composites Part B: Engineering, 2022, 233, 109648.	5.9	17
4	Prodrug inspired biâ€layered electrospun membrane with properties of enhanced tissue integration for guided tissue regeneration. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, , .	1.6	1
5	Recent Progress and Potential Biomedical Applications of Electrospun Nanofibers in Regeneration of Tissues and Organs. Polymers, 2022, 14, 1508.	2.0	17
6	Regional-specific meniscal extracellular matrix hydrogels and their effects on cell–matrix interactions of fibrochondrocytes. Biomedical Materials (Bristol), 2022, 17, 014105.	1.7	13
7	Incorporation of magnesium oxide nanoparticles into electrospun membranes improves pro-angiogenic activity and promotes diabetic wound healing. Materials Science and Engineering C, 2022, 133, 112609.	3.8	25
8	Review of the Recent Advances in Electrospun Nanofibers Applications in Water Purification. Polymers, 2022, 14, 1594.	2.0	33
9	The influence of 3-hydroxy-2-naphthoic acid on agricultural wastes extracted sugar production used as energy sources. Fuel, 2022, 323, 124235.	3.4	5
10	Graphene Oxide@Heavy Metal Ions (GO@M) Complex Simulated Waste as an Efficient Adsorbent for Removal of Cationic Methylene Blue Dye from Contaminated Water. Materials, 2022, 15, 3657.	1.3	3
11	Binary ethosomes-based transdermal patches assisted by metal microneedles significantly improve the bioavailability of carvedilol. Journal of Drug Delivery Science and Technology, 2022, 74, 103498.	1.4	3
12	Harnessing electrospun nanofibers to recapitulate hierarchical fibrous structures of meniscus. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 201-213.	1.6	23
13	Covalent grafting of PEG and heparin improves biological performance of electrospun vascular grafts for carotid artery replacement. Acta Biomaterialia, 2021, 119, 211-224.	4.1	54
14	Electrospinning for healthcare: recent advancements. Journal of Materials Chemistry B, 2021, 9, 939-951.	2.9	81
15	Enzymatic conversion of pretreated lignocellulosic biomass: A review on influence of structural changes of lignin. Bioresource Technology, 2021, 324, 124631.	4.8	109
16	Nanofiber Configuration of Electrospun Scaffolds Dictating Cell Behaviors and Cell-scaffold Interactions. Chemical Research in Chinese Universities, 2021, 37, 456-463.	1.3	4
17	Green Electrospun Silk Fibroin Nanofibers Loaded with Cationic Ethosomes for Transdermal Drug Delivery. Chemical Research in Chinese Universities, 2021, 37, 488-495.	1.3	7
18	Gas foaming of electrospun poly(L-lactide-co-caprolactone)/silk fibroin nanofiber scaffolds to promote cellular infiltration and tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2021, 201, 111637.	2.5	41

Jinglei Wu

#	Article	IF	CITATIONS
19	A woven scaffold with continuous mineral gradients for tendon-to-bone tissue engineering. Composites Part B: Engineering, 2021, 212, 108679.	5.9	31
20	Conjugate Electrospun 3D Gelatin Nanofiber Sponge for Rapid Hemostasis. Advanced Healthcare Materials, 2021, 10, e2100918.	3.9	79
21	Evaluation of a novel tilapia-skin acellular dermis matrix rationally processed for enhanced wound healing. Materials Science and Engineering C, 2021, 127, 112202.	3.8	26
22	Nanofiber configuration affects biological performance of decellularized meniscus extracellular matrix incorporated electrospun scaffolds. Biomedical Materials (Bristol), 2021, 16, 065013.	1.7	11
23	MgO-incorporated porous nanofibrous scaffold promotes osteogenic differentiation of pre-osteoblasts. Materials Letters, 2021, 299, 130098.	1.3	7
24	Magnesium oxide-incorporated electrospun membranes inhibit bacterial infections and promote the healing process of infected wounds. Journal of Materials Chemistry B, 2021, 9, 3727-3744.	2.9	39
25	Galactosylated chitosan-modified ethosomes combined with silk fibroin nanofibers is useful in transcutaneous immunization. Journal of Controlled Release, 2020, 327, 88-99.	4.8	28
26	Polyvinyl Alcohol/Hydroxyethylcellulose Containing Ethosomes as a Scaffold for Transdermal Drug Delivery Applications. Applied Biochemistry and Biotechnology, 2020, 191, 1624-1637.	1.4	18
27	Fabrication of antimicrobial films based on hydroxyethylcellulose and ZnO for food packaging application. Food Packaging and Shelf Life, 2020, 23, 100462.	3.3	49
28	Mechanical matching nanofibrous vascular scaffold with effective anticoagulation for vascular tissue engineering. Composites Part B: Engineering, 2020, 186, 107788.	5.9	43
29	A biodegradable multifunctional nanofibrous membrane for periodontal tissue regeneration. Acta Biomaterialia, 2020, 108, 207-222.	4.1	96
30	Optimizing Anisotropic Polyurethane Scaffolds to Mechanically Match with Native Myocardium. ACS Biomaterials Science and Engineering, 2020, 6, 2757-2769.	2.6	14
31	Polyethylenimine and sodium cholate-modified ethosomes complex as multidrug carriers for theÂtreatment of melanoma through transdermal delivery. Nanomedicine, 2019, 14, 2395-2408.	1.7	26
32	Heart valve tissueâ€derived hydrogels: Preparation and characterization of mitral valve chordae, aortic valve, and mitral valve gels. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2019, 107, 1732-1740.	1.6	12
33	Bioresorbable electrospun gelatin/polycaprolactone nanofibrous membrane as a barrier to prevent cardiac postoperative adhesion. Acta Biomaterialia, 2019, 83, 211-220.	4.1	67
34	An optical probe for detecting chondrocyte apoptosis in response to mechanical injury. Scientific Reports, 2017, 7, 10906.	1.6	8
35	Lung protection by inhalation of exogenous solubilized extracellular matrix. PLoS ONE, 2017, 12, e0171165.	1.1	14
36	Enhancing cell infiltration of electrospun fibrous scaffolds in tissue regeneration. Bioactive Materials, 2016, 1, 56-64.	8.6	199

Jinglei Wu

#	Article	IF	CITATIONS
37	Enhancement of chondrogenic differentiation of rabbit mesenchymal stem cells by oriented nanofiber yarn-collagen type I/hyaluronate hybrid. Materials Science and Engineering C, 2016, 58, 1071-1076.	3.8	35
38	Osteochondral regeneration using an oriented nanofiber yarnâ€collagen type I/hyaluronate hybrid/TCP biphasic scaffold. Journal of Biomedical Materials Research - Part A, 2015, 103, 581-592.	2.1	45
39	Tailoring Material Properties of Cardiac Matrix Hydrogels To Induce Endothelial Differentiation of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2015, 7, 11053-11061.	4.0	60
40	An injectable extracellular matrix derived hydrogel for meniscus repair and regeneration. Acta Biomaterialia, 2015, 16, 49-59.	4.1	168
41	Triggerable Degradation of Polyurethanes for Tissue Engineering Applications. ACS Applied Materials & Interfaces, 2015, 7, 20377-20388.	4.0	55
42	The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering. Biomaterials, 2014, 35, 2760-2772.	5.7	97
43	Cell Infiltration and Vascularization in Porous Nanoyarn Scaffolds Prepared by Dynamic Liquid Electrospinning. Journal of Biomedical Nanotechnology, 2014, 10, 603-614.	0.5	66
44	Fabrication of Electrospun Poly(L-Lactide-co-É›-Caprolactone)/Collagen Nanoyarn Network as a Novel, Three-Dimensional, Macroporous, Aligned Scaffold for Tendon Tissue Engineering. Tissue Engineering - Part C: Methods, 2013, 19, 925-936.	1.1	106
45	Electrospinning collagen/chitosan/poly(<scp>L</scp> â€lactic acidâ€ <i>co</i> â€ïµâ€caprolactone) to form a vascular graft: Mechanical and biological characterization. Journal of Biomedical Materials Research - Part A, 2013, 101A, 1292-1301.	2.1	106
46	Needleless Electrospinning of Polystyrene Fibers with an Oriented Surface Line Texture. Journal of Nanomaterials, 2012, 2012, 1-7.	1.5	20
47	Electrospun nanoyarn scaffold and its application in tissue engineering. Materials Letters, 2012, 89, 146-149.	1.3	57
48	Nano-Yarns Reinforced Silk Fibroin Composites Scaffold for Bone Tissue Engineering. Journal of Fiber Bioengineering and Informatics, 2012, 5, 169-179.	0.2	3
49	The Characterization of Poly(lactic-co-glycolic acid)/ Silk Fibroin Blend Nanofibrous Mats with the Methanol Vapor Treatment. Integrated Ferroelectrics, 2011, 128, 91-96.	0.3	Ο