

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/217864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A marked change in electrical resistivity of alumina upon exposure to trace concentration of acetone vapours. Ceramics International, 2020, 46, 15876-15881.	4.8	2
2	Graphene-based sensors of NO2, H2, acetone, and other gases/vapors: State of the art and realistic outlook. AIP Conference Proceedings, 2019, , .	0.4	0
3	Tailoring the interparticle distance in Langmuir nanoparticle films. Physical Chemistry Chemical Physics, 2019, 21, 9553-9563.	2.8	9
4	Graphene Langmuir-Schaefer films Decorated by Pd Nanoparticles for NO ₂ and H ₂ Gas Sensors. Measurement Science Review, 2019, 19, 64-69.	1.0	7
5	Response of alumina resistance to trace concentrations of acetone vapors at room temperature. Journal of Electrical Engineering, 2019, 70, 122-126.	0.7	3
6	Control of interparticle distance of ordered iron-oxide nanoparticle assemblies by means of surfactant design. AIP Conference Proceedings, 2018, , .	0.4	2
7	Thermal stability of γ-Fe ₂ O ₃ nanoparticles and their employment for sensing of acetone vapours. Journal of Physics: Conference Series, 2017, 939, 012009.	0.4	4
8	Cyclopean gauge factor of the strain-resistance transduction of indium oxide films. IOP Conference Series: Materials Science and Engineering, 2016, 108, 012043.	0.6	3
9	Few-layer Graphene Langmuir-schaefer Nanofilms for H 2 Gas Sensing. Procedia Engineering, 2016, 168, 243-246.	1.2	4
10	Colossal strain-resistance transduction of indium oxide films. Thin Solid Films, 2016, 616, 27-33.	1.8	1
11	Correlation between electrical parameters and defect states of polythiophene:fullerene based solar cell. Thin Solid Films, 2016, 614, 16-24.	1.8	3
12	Towards organic solar cells without the hole transporting layer on the plasmonâ€enhanced ITO electrode. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 867-876.	1.8	2
13	Nitrogen Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Key Engineering Materials, 2014, 605, 318-321.	0.4	1
14	Sensitivity and long-term stability of γ-Fe <inf>2</inf> 0 <inf>3</inf> and CoFe <inf>2</inf> 0 <inf>4</inf> nanoparticle gas sensors for NO <inf>2</inf> , CO and acetone sensing — A comparative study. , 2014, , .		1
15	Towards new multifunctional coatings for organic photovoltaics. Solar Energy Materials and Solar Cells, 2014, 125, 127-132.	6.2	13
16	A disordered layered phase in thin films of sexithiophene. Chemical Physics Letters, 2013, 574, 51-55.	2.6	36
17	Nitric Dioxide and Acetone Sensors Based on Iron Oxide Nanoparticles. Sensor Letters, 2013, 11, 2322-2326.	0.4	12
18	Gas sensing properties and electrical resistance of Langmuir-Blodgett iron oxide nanoparticle arrays.		0

,2012,,.

J IvanÄo

#	Article	IF	CITATIONS
19	Intrinsic work function of molecular films. Thin Solid Films, 2012, 520, 3975-3986.	1.8	11
20	Indium on a copper phthalocyanine thin film: Not a reactive system. Physical Review B, 2010, 81, .	3.2	6
21	Critical evaluation of band bending determination in organic films from photoemission measurements. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2009, 27, 1178-1182.	2.1	9
22	Valence band fine structure of copper phthalocyanine thin films: Effect of molecular orientation. Physica Status Solidi (B): Basic Research, 2009, 246, 1510-1518.	1.5	6
23	α-Sexithiophene on Cu(110) and Cu(110)–(2×1)O: An STM and NEXAFS study. Surface Science, 2009, 603, 412-418.	1.9	32
24	Controlling geometric and electronic properties of highly ordered CuPc thin films. Applied Surface Science, 2009, 255, 6806-6808.	6.1	11
25	Optical properties of sexithiophene films grown on ordered and disordered TiO2(110) surfaces. Thin Solid Films, 2008, 516, 4247-4251.	1.8	2
26	Epitaxial growth of sexithiophene on (110). Journal of Crystal Growth, 2008, 310, 101-109.	1.5	13
27	On validity of the Schottky-Mott rule in organic semiconductors: Sexithiophene on various substrates. Journal of Applied Physics, 2007, 101, 103712.	2.5	29
28	Device relevant organic films and interfaces: A surface science approach. Surface Science, 2007, 601, 5683-5689.	1.9	30
29	The electronic band alignment on nanoscopically patterned substrates. Organic Electronics, 2007, 8, 63-68.	2.6	38
30	Dissociation of sexithiophene on Al(111) surface. Organic Electronics, 2007, 8, 545-551.	2.6	7
31	Sexithiophene films on ordered and disordered TiO2(110) surfaces: Electronic, structural and morphological properties. Surface Science, 2007, 601, 178-187.	1.9	64
32	Methods of observation and elimination of semiconductor defect states. Solar Energy, 2006, 80, 645-652.	6.1	26
33	Electronic and geometric structure of electro-optically active organic films and associated interfaces. Thin Solid Films, 2006, 514, 156-164.	1.8	25
34	Organic Heteroepitaxy:p-Sexiphenyl on Uniaxially Oriented α-Sexithiophene. Advanced Materials, 2006, 18, 2466-2470.	21.0	57
35	Oxygen induced molecular reorientation on aluminum. Applied Physics Letters, 2006, 88, 253111.	3.3	14
36	Deoxidation of gallium arsenide surface via silicon overlayer: A study on the evolution of the interface state density. Journal of Applied Physics, 2005, 97, 073712.	2.5	20

J IvanÄo

#	Article	IF	CITATIONS
37	Sexithiophene films on clean and oxidized Si(111) surfaces: Growth and electronic structure. Journal of Applied Physics, 2004, 96, 2716-2724.	2.5	41
38	Oxygen as a surfactant for Al contact metallization of organic layers. Applied Physics Letters, 2004, 85, 585-587.	3.3	11
39	Structure and morphology of sexiphenyl thin films grown on aluminium (111). Organic Electronics, 2004, 5, 45-51.	2.6	29
40	Semiconductor surface and interface passivation by cyanide treatment. Applied Surface Science, 2004, 235, 279-292.	6.1	15
41	Epitaxial Growth of Sexiphenyl on Al(111):Â From Monolayer to Crystalline Films. Langmuir, 2004, 20, 7512-7516.	3.5	27
42	Substrate-Mediated Electronic Structure and Properties of Sexiphenyl Films. Advanced Materials, 2003, 15, 1812-1815.	21.0	48
43	Ordered mono- and multilayer films of sexiphenyl on Al(111): a LEED investigation. Thin Solid Films, 2003, 433, 269-273.	1.8	25
44	Low-energy particle treatment of GaAs surface. Thin Solid Films, 2003, 433, 108-113.	1.8	2
45	Elimination of interface states in the GaAs band-gap by cyanide treatment: XPS measurements under bias. Surface Science, 2003, 529, 329-337.	1.9	13
46	A study of Al/Si3N4/ultrathin Si/GaAs structures by DLTS and C–V measurements. Thin Solid Films, 2003, 433, 352-358.	1.8	4
47	Acrylic acid nitrile, a film-forming electrolyte component for lithium-ion batteries, which belongs to the family of additives containing vinyl groups. Journal of Power Sources, 2003, 119-121, 368-372.	7.8	115
48	Reactivity of Au with ultrathin Si layers: A photoemission study. Journal of Applied Physics, 2001, 90, 345-350.	2.5	72
49	Influence of the plasma pretreatment of GaAs(100) and Si(100) surfaces on the optical and structural properties of Si3N4/GaAs and a-SiGe/Si interfaces. Applied Surface Science, 2000, 166, 72-76.	6.1	4
50	Unpinning of the Au/GaAs interfacial Fermi level by means of ultrathin undoped silicon interlayer inclusion. Journal of Applied Physics, 2000, 87, 795-800.	2.5	8
51	Semi-insulating GaAs-based Schottky contacts in the role of detectors of ionising radiation: An effect of the interface treatment. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1999, 434, 158-163.	1.6	2
52	X-ray photoemission and photoreflectance study of Au/ultrathin Si/n-GaAs Schottky contacts and hydrogen plasma treated semi-insulating GaAs surfaces. Thin Solid Films, 1999, 343-344, 328-331.	1.8	1
53	Schottky barrier height dependence on the silicon interlayer thickness of AuSi-GaAs contacts : chemistry of interface formation study. Vacuum, 1998, 50, 407-411.	3.5	1
54	Electrical characterization of Au/SiOx/n-GaAs junctions. Solid-State Electronics, 1998, 42, 229-233.	1.4	4

J IvanÄo

#	Article	IF	CITATIONS
55	Au/GaAs(100) interface Schottky barrier modification by a silicon nitride intralayer. Journal of Applied Physics, 1997, 81, 292-296.	2.5	13
56	Attempts to correlate hydrogen plasma-induced and Si3N4/GaAs interface-related surface states: a charge deep-level transient spectroscopy study. Applied Surface Science, 1997, 108, 187-196.	6.1	8
57	A study on thermal emission of charges at Si3N4—GaAs interfaces after annealing in N2 and N2 + H2 mixtures. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 1996, 40, 159-163.	3.5	2
58	Influence of plasma on silicon surface during lowâ€energy plasma deposition process: The comparative study on Si3N4/Si structures. Applied Physics Letters, 1994, 65, 2594-2596.	3.3	4
59	On the accumulation capacitance of Si3N4/Si/GaAs structures fabricated in an electron cyclotron resonance plasma. Applied Surface Science, 1993, 72, 31-37.	6.1	1
60	Properties of metal-semiconductor contacts with plasma deposited silicon nitride interfacial layers. Journal of Crystal Growth, 1993, 126, 156-162.	1.5	7
61	An interpretation of dlts spectra of Al/Si3N4/ultrathin Sl/GaAs structures — Effect of quantum well or interface states?. European Physical Journal D, 1993, 43, 875-879.	0.4	0
62	Increased thermal stability of Au/GaAs metalâ€insulatorâ€semiconductor Schottky diodes with silicon nitride interfacial layer deposited by remote plasmaâ€enhanced chemical vapor deposition. Journal of Applied Physics, 1993, 73, 5075-5080.	2.5	7
63	Metal/thin insulator/silicon schottky diodes with plasma deposited silicon nitride interfacial layer. Physica Status Solidi A, 1992, 130, 245-251.	1.7	7
64	Morphological and Electrical Properties of Stretched Nanoparticle Layers. Key Engineering Materials, 0, 644, 31-34.	0.4	6