David Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2178638/publications.pdf Version: 2024-02-01

π	ARTICLE	IF	CITATIONS
1	Methyltrioctylammonium Octadecanoate as Lubricant Additive to Different Base Oils. Lubricants, 2022, 10, 128.	1.2	2
2	Long-term thermal stability of fatty acid anion-based ionic liquids. Journal of Molecular Liquids, 2021, 328, 115492.	2.3	8
3	Viscoelastic Behaviour of Flexible Thermoplastic Polyurethane Additively Manufactured Parts: Influence of Inner-Structure Design Factors. Polymers, 2021, 13, 2365.	2.0	4
4	Friction, Wear and Corrosion Behavior of Environmentally-Friendly Fatty Acid Ionic Liquids. Coatings, 2021, 11, 21.	1.2	3
5	The Influence of Image Processing and Layer-to-Background Contrast on the Reliability of Flatbed Scanner-Based Characterisation of Additively Manufactured Layer Contours. Applied Sciences (Switzerland), 2021, 11, 178.	1.3	5
6	Layer Contour Verification in Additive Manufacturing by Means of Commercial Flatbed Scanners. Sensors, 2020, 20, 1.	2.1	309
7	Evaluation of a modified halo flowing atmospheric pressure afterglow ion source for the analysis of directly injected volatile organic compounds. Journal of Analytical Atomic Spectrometry, 2020, 35, 2002-2010.	1.6	4
8	Two fatty acid anion-based ionic liquids - part II: Effectiveness as an additive to a polyol ester. Journal of Molecular Liquids, 2020, 310, 113158.	2.3	12
9	Two fatty acid anion-based ionic liquids - part I: Physicochemical properties and tribological behavior as neat lubricants. Journal of Molecular Liquids, 2020, 305, 112827.	2.3	21
10	Relationships between the physical properties and biodegradability and bacteria toxicity of fatty acid-based ionic liquids. Journal of Molecular Liquids, 2019, 292, 111451.	2.3	28
11	Tribological behavior of three fatty acid ionic liquids in the lubrication of different material pairs. Journal of Molecular Liquids, 2019, 296, 111858.	2.3	15
12	Tribological performance of three fatty acid anion-based ionic liquids (FAILs) used as lubricant additive. Journal of Molecular Liquids, 2019, 296, 111881.	2.3	23
13	Novel fatty acid anion-based ionic liquids: Contact angle, surface tension, polarity fraction and spreading parameter. Journal of Molecular Liquids, 2019, 288, 110995.	2.3	38
14	Physicochemical, traction and tribofilm formation properties of three octanoate-, laurate- and palmitate-anion based ionic liquids. Journal of Molecular Liquids, 2019, 284, 639-646.	2.3	29
15	Dimensional and Geometrical Quality Enhancement in Additively Manufactured Parts: Systematic Framework and A Case Study. Materials, 2019, 12, 3937.	1.3	5
16	Tribological performance of tributylmethylammonium bis(trifluoromethylsulfonyl)amide as neat lubricant and as an additive in a polar oil. Friction, 2019, 7, 282-288.	3.4	15
17	Lubrication Properties of the Ionic Liquid Dodecyl-3 Methylimidazolium bis(trifluoromethylsulfonyl)imide. Tribology Letters, 2018, 66, 1.	1.2	10
18	Environmental properties of phosphonium, imidazolium and ammonium cation-based ionic liquids as potential lubricant additives. Journal of Molecular Liquids, 2018, 272, 937-947.	2.3	40

DAVID BLANCO

#	Article	IF	CITATIONS
19	A novel gas sampling introduction interface for fast analysis of volatile organic compounds using radiofrequency pulsed glow discharge time of flight mass spectrometry. Analytica Chimica Acta, 2018, 1038, 59-66.	2.6	6
20	Two phosphonium cation-based ionic liquids used as lubricant additive. Part II: Tribofilm analysis and friction torque loss in cylindrical roller thrust bearings at constant temperature. Tribology International, 2017, 109, 496-504.	3.0	24
21	Antifriction and Antiwear Properties of an Ionic Liquid with Fluorine-Containing Anion Used as Lubricant Additive. Tribology Letters, 2017, 65, 1.	1.2	28
22	Isoconversional kinetic analysis applied to five phosphonium cation-based ionic liquids. Thermochimica Acta, 2017, 648, 62-74.	1.2	14
23	Model-free kinetics applied to evaluate the long-term thermal stability of three [NTf2] anion-based ionic liquids. Thermochimica Acta, 2017, 656, 70-84.	1.2	17
24	Lubrication performance of an ammonium cation-based ionic liquid used as an additive in a polar oil. Tribology International, 2017, 116, 422-430.	3.0	33
25	Tribological Behaviour of PVD Coatings Lubricated with a FAPâ^' Anion-Based Ionic Liquid Used as an Additive. Lubricants, 2016, 4, 8.	1.2	15
26	Life cycle assessment of introducing an anaerobic digester in a municipal wastewater treatment plant in Spain. Water Science and Technology, 2016, 73, 835-842.	1.2	12
27	Friction, wear and tribofilm formation with a [NTf2] anion-based ionic liquid as neat lubricant. Tribology International, 2016, 103, 73-86.	3.0	24
28	Wettability and corrosion of [NTf2] anion-based ionic liquids on steel and PVD (TiN, CrN, ZrN) coatings. Surface and Coatings Technology, 2016, 302, 13-21.	2.2	39
29	Wetting Properties of Seven Phosphonium Cation-Based Ionic Liquids. Industrial & Engineering Chemistry Research, 2016, 55, 9594-9602.	1.8	22
30	Phosphonium cation-based ionic liquids as neat lubricants: Physicochemical and tribological performance. Tribology International, 2016, 95, 118-131.	3.0	98
31	Effectiveness of phosphonium cation-based ionic liquids as lubricant additive. Tribology International, 2016, 98, 82-93.	3.0	71
32	Nonisotropic experimental characterization of the relaxation modulus for PolyJet manufactured parts. Journal of Materials Research, 2014, 29, 1876-1882.	1.2	56
33	Influence of Surface Position along the Working Range of Conoscopic Holography Sensors on Dimensional Verification of AISI 316 Wire EDM Machined Surfaces. Sensors, 2014, 14, 4495-4512.	2.1	11
34	Integration of a conoscopic holography sensor on a CMM. , 2012, , .		9
35	Lubrication of CrN Coating With Ethyl-Dimethyl-2-Methoxyethylammonium Tris(pentafluoroethyl)Trifluorophosphate Ionic Liquid as Additive to PAO 6. Tribology Letters, 2011, 41, 295-302.	1.2	57
36	Use of ethyl-dimethyl-2-methoxyethylammonium tris(pentafluoroethyl)trifluorophosphate as base oil additive in the lubrication of TiN PVD coating. Tribology International, 2011, 44, 645-650.	3.0	65

DAVID BLANCO

#	Article	IF	CITATIONS
37	Lubrication of TiN, CrN and DLC PVD Coatings with 1-Butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribology Letters, 2010, 40, 269-277.	1.2	77
38	Friction reduction properties of a CuO nanolubricant used as lubricant for a NiCrBSi coating. Wear, 2010, 268, 325-328.	1.5	159
39	Models for stiffness characterization of the spindle-chuck system in a CNC lathe for prediction of deflections in CAPP. , 2010, , .		1
40	Influence of surface material on the quality of laser triangulation digitized point clouds for reverse engineering tasks. , 2009, , .		12
41	Influence Of Ambient Light On The Repeatability Of Laser Triangulation Digitized Point Clouds When Scanning EN AW 6082 Flat Faced Features. , 2009, , .		2
42	Influence of roughness on surface scanning by means of a laser stripe system. International Journal of Advanced Manufacturing Technology, 2009, 43, 1157-1166.	1.5	35
43	Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear, 2009, 266, 1224-1228.	1.5	133
44	Methodology for set-up planning automation of turned parts. International Journal of Production Research, 2007, 45, 3917-3947.	4.9	7
45	CAPILLARY ZONE ELECTROPHORETIC SEPARATION OF PROTEINS USING COATED CAPILLARIES. Journal of Liquid Chromatography and Related Technologies, 2002, 25, 1171-1185.	0.5	5