
Hang Qian

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2178582/publications.pdf Version: 2024-02-01

ΗλΝΟ ΟΙΛΝ

#	Article	IF	CITATIONS
1	Protein-mediated DNA self-assembly by controlling the surface charge in a molecular crowding environment. Biomaterials Science, 2022, , .	5.4	2
2	An mTOR siRNA‣oaded Spermidine/DNA Tetrahedron Nanoplatform with a Synergistic Antiâ€Inflammatory Effect on Acute Lung Injury. Advanced Healthcare Materials, 2022, 11, e2200008.	7.6	8
3	Materialistic Interfaces with Nucleic Acids: Principles and Their Impact. Advanced Functional Materials, 2022, 32, .	14.9	6
4	Extracellular HMGB1 Impairs Macrophage-Mediated Efferocytosis by Suppressing the Rab43-Controlled Cell Surface Transport of CD91. Frontiers in Immunology, 2022, 13, 767630.	4.8	7
5	Functionalizing DNA nanostructures with natural cationic amino acids. Bioactive Materials, 2021, 6, 2946-2955.	15.6	9
6	Extracellular CIRP-Impaired Rab26 Restrains EPOR-Mediated Macrophage Polarization in Acute Lung Injury. Frontiers in Immunology, 2021, 12, 768435.	4.8	5
7	Assembling Defined DNA Nanostructure with Nitrogenâ€Enriched Carbon Dots for Theranostic Cancer Applications. Small, 2020, 16, e1906975.	10.0	45
8	Endothelial Cell Inflammation and Barriers Are Regulated by the Rab26-Mediated Balance between <i>β</i> 2-AR and TLR4 in Pulmonary Microvessel Endothelial Cells. Mediators of Inflammation, 2019, 2019, 1-10.	3.0	9
9	Targeted Delivery of Rab26 siRNA with Precisely Tailored DNA Prism for Lung Cancer Therapy. ChemBioChem, 2019, 20, 1139-1144.	2.6	25
10	Isothermal Self-Assembly of Spermidine–DNA Nanostructure Complex as a Functional Platform for Cancer Therapy. ACS Applied Materials & Interfaces, 2018, 10, 15504-15516.	8.0	38
11	Hollow carbon sphere with open pore encapsulated MnO2 nanosheets as high-performance anode materials for lithium ion batteries. Electrochimica Acta, 2018, 260, 783-788.	5.2	47
12	RAB26-dependent autophagy protects adherens junctional integrity in acute lung injury. Autophagy, 2018, 14, 1677-1692.	9.1	78
13	Capturing intracellular oncogenic microRNAs with self-assembled DNA nanostructures for microRNA-based cancer therapy. Chemical Science, 2018, 9, 7562-7568.	7.4	48
14	ATG101 Single-Stranded Antisense RNA-Loaded Triangular DNA Nanoparticles Control Human Pulmonary Endothelial Growth via Regulation of Cell Macroautophagy. ACS Applied Materials & Interfaces, 2017, 9, 42544-42555.	8.0	18
15	Protecting microRNAs from RNase degradation with steric DNA nanostructures. Chemical Science, 2017, 8, 1062-1067.	7.4	65
16	Regulation on Toll-like Receptor 4 and Cell Barrier Function by Rab26 siRNA-loaded DNA Nanovector in Pulmonary Microvascular Endothelial Cells. Theranostics, 2017, 7, 2537-2554.	10.0	26
17	Cellular processing and destinies of artificial DNA nanostructures. Chemical Society Reviews, 2016, 45, 4199-4225.	38.1	146
18	Biosensors: Electrochemical Quantification of <i>Escherichia coli</i> with DNA Nanostructure (Adv.) Tj ETQq0 C	0 rgBT /0	verlock 10 Tf

Hang Qian

#	Article	IF	CITATIONS
19	Regulation of vascular smooth muscle cell autophagy by DNA nanotube-conjugated mTOR siRNA. Biomaterials, 2015, 67, 137-150.	11.4	38
20	Electrochemical Quantification of <i>Escherichia coli</i> with DNA Nanostructure. Advanced Functional Materials, 2015, 25, 3840-3846.	14.9	72
21	Inhibition of DNA nanotube-conjugated mTOR siRNA on the growth of pulmonary arterial smooth muscle cells. Data in Brief, 2015, 5, 28-34.	1.0	2
22	DNA Nanotubes: Self-Assembly of DNA Nanotubes with Defined Diameters and Lengths (Small 5/2014). Small, 2014, 10, 854-854.	10.0	1
23	Reduced Graphene Oxide Supported MnO Nanoparticles with Excellent Lithium Storage Performance. Electrochimica Acta, 2014, 118, 112-117.	5.2	50
24	Selfâ€Assembly of DNA Nanotubes with Defined Diameters and Lengths. Small, 2014, 10, 855-858.	10.0	23
25	Polyvinyl pyrrolidone-assisted synthesis of a Fe3O4/graphene composite with excellent lithium storage properties. RSC Advances, 2014, 4, 6379.	3.6	21
26	Study on SnO2/graphene composites with superior electrochemical performance for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 9345.	10.3	42
27	DNA cohesion through bubble–bubble recognition. Chemical Communications, 2012, 48, 12216.	4.1	6
28	Reversibly Switching the Surface Porosity of a DNA Tetrahedron. Journal of the American Chemical Society, 2012, 134, 11998-12001.	13.7	39
29	Controlling the Chirality of DNA Nanocages. Angewandte Chemie - International Edition, 2012, 51, 7999-8002.	13.8	31