Xiaowei Teng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2178025/publications.pdf

Version: 2024-02-01

206112 147801 4,444 47 31 48 citations h-index g-index papers 52 52 52 6488 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Revitalizing Iron Redox by Anion-Insertion-Assisted Ferro- and Ferri-Hydroxides Conversion at Low Alkalinity. Journal of the American Chemical Society, 2022, 144, 11938-11942.	13.7	2
2	Dual-stage K ⁺ ion intercalation in V ₂ O ₅ -conductive polymer composites. Journal of Materials Chemistry A, 2021, 9, 15629-15636.	10.3	13
3	High-Capacity Aqueous Storage in Vanadate Cathodes Promoted by the Zn-Ion and Proton Intercalation and Conversion–Intercalation of Vanadyl Ions. ACS Applied Materials & Samp; Interfaces, 2021, 13, 25993-26000.	8.0	20
4	Exemption of lattice collapse in Ni–MnO ₂ birnessite regulated by the structural water mobility. Journal of Materials Chemistry A, 2021, 9, 23459-23466.	10.3	12
5	Potentiodynamics of the Zinc and Proton Storage in Disordered Sodium Vanadate for Aqueous Zn-Ion Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54627-54636.	8.0	46
6	Framework Doping of Ni Enhances Pseudocapacitive Na-Ion Storage of (Ni)MnO ₂ Layered Birnessite. Chemistry of Materials, 2019, 31, 8774-8786.	6.7	51
7	Structural water and disordered structure promote aqueous sodium-ion energy storage in sodium-birnessite. Nature Communications, 2019, 10, 4975.	12.8	75
8	Conversion of Ethanol via C–C Splitting on Noble Metal Surfaces in Room-Temperature Liquid-Phase. Journal of the American Chemical Society, 2019, 141, 9444-9447.	13.7	15
9	Biphase Cobalt–Manganese Oxide with High Capacity and Rate Performance for Aqueous Sodiumâ€lon Electrochemical Energy Storage. Advanced Functional Materials, 2018, 28, 1703266.	14.9	25
10	Structural water engaged disordered vanadium oxide nanosheets for high capacity aqueous potassium-ion storage. Nature Communications, 2017, 8, 15520.	12.8	121
11	Influence of aˆ—OH adsorbates on the potentiodynamics of the CO2 generation during the electro-oxidation of ethanol. Journal of Catalysis, 2017, 353, 335-348.	6.2	24
12	High purity Mn5O8 nanoparticles with a high overpotential to gas evolution reactions for high voltage aqueous sodium-ion electrochemical storage. Frontiers in Energy, 2017, 11, 383-400.	2.3	19
13	Enhanced Electrokinetics of Câ^'C Bond Splitting during Ethanol Oxidation by using a Pt/Rh/Sn Catalyst with a Partially Oxidized Pt and Rh Core and a SnO ₂ Shell. ChemCatChem, 2016, 8, 2876-2880.	3.7	31
14	Bivalence Mn5O8 with hydroxylated interphase for high-voltage aqueous sodium-ion storage. Nature Communications, 2016, 7, 13370.	12.8	109
15	Exchange bias effect in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:msub> <mml:mtext> Au-Fe </mml:mtext> O <mml:mn> 4 </mml:mn> </mml:msub> </mml:mrow> </mml:math> dumbbell nanoparticles induced by the charge transfer from gold. Physical Review B. 2015, 92.	xt>{mml:r	nn <u>3</u> 3
16	Electrochemically prepared cuprous oxide film for photo-catalytic oxygen evolution from water oxidation under visible light. Solar Energy Materials and Solar Cells, 2015, 132, 275-281.	6.2	15
17	Platinum-Tin Oxide Core–Shell Catalysts for Efficient Electro-Oxidation of Ethanol. Journal of the American Chemical Society, 2014, 136, 10862-10865.	13.7	180
18	Screening iridium-based bimetallic alloys as catalysts for direct ethanol fuel cells. Applied Catalysis A: General, 2014, 483, 85-96.	4.3	30

#	Article	IF	CITATIONS
19	Pseudocapacitive Hausmannite Nanoparticles with (101) Facets: Synthesis, Characterization, and Charge†Transfer Mechanism. Chem Sus Chem, 2013, 6, 1983-1992.	6.8	22
20	Storage of Potassium Ions in Layered Vanadium Pentoxide Nanofiber Electrodes for Aqueous Pseudocapacitors. ChemSusChem, 2013, 6, 2231-2235.	6.8	16
21	Palladium–Tin Alloyed Catalysts for the Ethanol Oxidation Reaction in an Alkaline Medium. ACS Catalysis, 2012, 2, 287-297.	11.2	266
22	Pseudocapacitive NiO Fine Nanoparticles for Supercapacitor Reactions. Journal of the Electrochemical Society, 2012, 159, A1598-A1603.	2.9	44
23	Iridium–Ruthenium Alloyed Nanoparticles for the Ethanol Oxidation Fuel Cell Reactions. ACS Catalysis, 2012, 2, 1226-1231.	11.2	47
24	Highly Efficient K $<$ sub $>0.15sub>MnO<sub>2sub> Birnessite Nanosheets for Stable Pseudocapacitive Cathodes. Journal of Physical Chemistry C, 2012, 116, 20173-20181.$	3.1	65
25	Promotional Effects of Bismuth on the Formation of Platinumâ [^] Bismuth Nanowires Network and the Electrocatalytic Activity toward Ethanol Oxidation. Crystal Growth and Design, 2011, 11, 594-599.	3.0	36
26	Highly Active Iridium/Iridium–Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction. Journal of the American Chemical Society, 2011, 133, 15172-15183.	13.7	167
27	Ternary PtSnRh–SnO2 nanoclusters: synthesis and electroactivity for ethanol oxidation fuel cell reaction. Journal of Materials Chemistry, 2011, 21, 8887.	6.7	64
28	Synthesis and electrocatalytic property of cubic and spherical nanoparticles of cobalt platinum alloys. Frontiers of Chemical Engineering in China, 2010, 4, 45-51.	0.6	10
29	Structural characterization of bimetallic nanomaterials with overlapping x-ray absorption edges. Physical Review B, 2009, 80, .	3.2	25
30	Electronic and Magnetic Properties of Ultrathin Au/Pt Nanowires. Nano Letters, 2009, 9, 3177-3184.	9.1	91
31	One-Dimensional Ceria as Catalyst for the Low-Temperature Waterâ^'Gas Shift Reaction. Journal of Physical Chemistry C, 2009, 113, 21949-21955.	3.1	68
32	Synthesis of Ultrathin Palladium and Platinum Nanowires and a Study of Their Magnetic Properties. Angewandte Chemie - International Edition, 2008, 47, 2055-2058.	13.8	116
33	Formation of Pd/Au Nanostructures from Pd Nanowires via Galvanic Replacement Reaction. Journal of the American Chemical Society, 2008, 130, 1093-1101.	13.7	146
34	Hybrid Pt/Au Nanowires: Synthesis and Electronic Structure. Journal of Physical Chemistry C, 2008, 112, 14696-14701.	3.1	40
35	Three-Dimensional PtRu Nanostructures. Chemistry of Materials, 2007, 19, 36-41.	6.7	123
36	Roles of Twin Defects in the Formation of Platinum Multipod Nanocrystals. Journal of Physical Chemistry C, 2007, 111, 14312-14319.	3.1	136

#	Article	IF	CITATIONS
37	Iron oxide shell as the oxidation-resistant layer in SmCo5 @ Fe2O3 core-shell magnetic nanoparticles. Journal of Nanoscience and Nanotechnology, 2007, 7, 356-61.	0.9	2
38	Planar tripods of platinum: formation and self-assembly. Physical Chemistry Chemical Physics, 2006, 8, 4660.	2.8	63
39	Synthesis of Porous Platinum Nanoparticles. Small, 2006, 2, 249-253.	10.0	234
40	Synthesis of magnetic nanocomposites and alloys from platinum–iron oxide core–shell nanoparticles. Nanotechnology, 2005, 16, S554-S561.	2.6	39
41	Synthesis of Platinum Multipods:Â An Induced Anisotropic Growth. Nano Letters, 2005, 5, 885-891.	9.1	272
42	Effects of surfactants and synthetic conditions on the sizes and self-assembly of monodisperse iron oxide nanoparticlesElectronic supplementary information (ESI) available: XRD data of iron oxide nanoparticles, Fig. S1 and S2. See http://www.rsc.org/suppdata/jm/b3/b311610g/. Journal of Materials Chemistry, 2004, 14, 774.	6.7	181
43	"Pulling―Nanoparticles into Water:  Phase Transfer of Oleic Acid Stabilized Monodisperse Nanoparticles into Aqueous Solutions of α-Cyclodextrin. Nano Letters, 2003, 3, 1555-1559.	9.1	279
44	Synthesis of Face-Centered Tetragonal FePt Nanoparticles and Granular Films from Pt@Fe2O3Coreâ^'Shell Nanoparticles. Journal of the American Chemical Society, 2003, 125, 14559-14563.	13.7	173
45	Solvent-Free Atom Transfer Radical Polymerization in the Synthesis of Fe2O3@Polystyrene Coreâ^'Shell Nanoparticles. Nano Letters, 2003, 3, 789-793.	9.1	236
46	Patterned Langmuirâ^Blodgett Films of Monodisperse Nanoparticles of Iron Oxide Using Soft Lithography. Journal of the American Chemical Society, 2003, 125, 630-631.	13.7	236
47	Platinum-Maghemite Coreâ^'Shell Nanoparticles Using a Sequential Synthesis. Nano Letters, 2003, 3, 261-264.	9.1	400