yann Rolland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2177979/publications.pdf

Version: 2024-02-01

101 4,550 papers citations

39 63
h-index g-index

103 103 all docs docs citations

103 times ranked 3114 citing authors

#	Article	IF	CITATIONS
1	A slab breakoff model for the Neogene thermal evolution of South Karakorum and South Tibet. Earth and Planetary Science Letters, 2002, 195, 45-58.	4.4	225
2	Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth and Planetary Science Letters, 2003, 214, 203-219.	4.4	143
3	Jurassic back-arc and Cretaceous hot-spot series In the Armenian ophiolites $\hat{a} \in \mathbb{R}^n$ Implications for the obduction process. Lithos, 2009, 112, 163-187.	1.4	143
4	Jurassic accretionary complex and ophiolite from northeast Turkey: No evidence for the Cimmerian continental ribbon. Geology, 2013, 41, 255-258.	4.4	141
5	The cretaceous Ladakh arc of NW himalaya—slab melting and melt–mantle interaction during fast northward drift of Indian Plate. Chemical Geology, 2002, 182, 139-178.	3.3	132
6	Middle Cretaceous back-arc formation and arc evolution along the Asian margin: the Shyok Suture Zone in northern Ladakh (NW Himalaya). Tectonophysics, 2000, 325, 145-173.	2.2	131
7	Subductions, obduction and collision in the Lesser Caucasus (Armenia, Azerbaijan, Georgia), new insights. Geological Society Special Publication, 2010, 340, 329-352.	1.3	128
8	Evidence for â^¼80–75Ma subduction jump during Anatolide–Tauride–Armenian block accretion and â^¼ Arabia–Eurasia collision in Lesser Caucasus–East Anatolia. Journal of Geodynamics, 2012, 56-57, 76-85.	48Ma 1.6	118
9	Relationships between tectonics, slope instability and climate change: Cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology, 2010, 117, 1-13.	2.6	116
10	Blueschists of the Amassia-Stepanavan Suture Zone (Armenia): linking Tethys subduction history from E-Turkey to W-Iran. International Journal of Earth Sciences, 2009, 98, 533-550.	1.8	109
11	Geology, geochemistry and 40Ar/39Ar dating of Sevan ophiolites (Lesser Caucasus, Armenia): Evidence for Jurassic Back-arc opening and hot spot event between the South Armenian Block and Eurasia. Journal of Asian Earth Sciences, 2009, 34, 135-153.	2.3	104
12	Collision kinematics in the western external Alps. Tectonics, 2014, 33, 1055-1088.	2.8	103
13	Caucasus collisional history: Review of data from East Anatolia to West Iran. Gondwana Research, 2017, 49, 130-146.	6.0	103
14	Late evolution of the southern European Variscan belt: Exhumation of the lower crust in a context of oblique convergence. Comptes Rendus - Geoscience, 2009, 341, 214-223.	1.2	96
15	Dating low-temperature deformation by 40Ar/39Ar on white mica, insights from the Argentera-Mercantour Massif (SW Alps). Lithos, 2011, 125, 521-536.	1.4	91
16	⁴⁰ Ar/ ³⁹ Ar dating of Penninic Front tectonic displacement (W Alps) during the Lower Oligocene (31–34 Ma). Terra Nova, 2009, 21, 127-136.	2.1	90
17	Prolonged Variscan to Alpine history of an active Eurasian margin (Georgia, Armenia) revealed by 40Ar/39Ar dating. Gondwana Research, 2011, 20, 798-815.	6.0	83
18	Tectonoâ€metamorphic evolution of the Karakorum Metamorphic complex (Dassu–Askole area, NE) Tj ETQq0 Metamorphic Geology, 2001, 19, 717-737.	0 0 rgBT /0 3 . 4	Overlock 10 T 82

Metamorphic Geology, 2001, 19, 717-737.

#	Article	IF	CITATIONS
19	Constraining deformation stages in brittle–ductile shear zones from combined field mapping and 40Ar/39Ar dating: The structural evolution of the Grimsel Pass area (Aar Massif, Swiss Alps). Journal of Structural Geology, 2009, 31, 1377-1394.	2.3	79
20	Jurassic ophiolite formation and emplacement as backstop to a subduction-accretion complex in northeast Turkey, the Refahiye ophiolite, and relation to the Balkan ophiolites. Numerische Mathematik, 2013, 313, 1054-1087.	1.4	73
21	Late Palaeozoic to Mesozoic kinematic history of the Talas–Ferghana strike-slip fault (Kyrgyz West) Tj ETQq1 1 2013, 67-68, 76-92.	0.784314 2.3	rgBT /Over 71
22	Geochronological evidence for continuous exhumation through the ductileâ€brittle transition along a crustalâ€scale lowâ€angle normal fault: Simplon Fault Zone, central Alps. Tectonics, 2010, 29, .	2.8	70
23	Quantified sensitivity of small lake sediments to record historic earthquakes: Implications for paleoseismology. Journal of Geophysical Research F: Earth Surface, 2016, 121, 2-16.	2.8	70
24	The eastern Black Sea-Caucasus region during the Cretaceous: New evidence to constrain its tectonic evolution. Comptes Rendus - Geoscience, 2016, 348, 23-32.	1.2	67
25	Linking the NE Anatolian and Lesser Caucasus ophiolites: evidence for large-scale obduction of oceanic crust and implications for the formation of the Lesser Caucasus-Pontides Arc. Geodinamica Acta, 2013, 26, 311-330.	2.2	64
26	Timing of the last deglaciation revealed by receding glaciers at the Alpine-scale: impact on mountain geomorphology. Quaternary Science Reviews, 2012, 31, 127-142.	3.0	63
27	21,000ÂYears of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Regional Environmental Change, 2014, 14, 1685-1696.	2.9	60
28	Late Paleozoic evolution of the South Tien Shan: Insights from P–T estimates and allanite geochronology on retrogressed eclogites (Chatkal range, Kyrgyzstan). Journal of Geodynamics, 2016, 96, 62-80.	1.6	58
29	Evidence for superposed MORB, oceanic plateau and volcanic arc series in the Lesser Caucasus (Stepanavan, Armenia). Comptes Rendus - Geoscience, 2007, 339, 482-492.	1.2	57
30	The Armenian Ophiolite: insights for Jurassic back-arc formation, Lower Cretaceous hot spot magmatism and Upper Cretaceous obduction over the South Armenian Block. Geological Society Special Publication, 2010, 340, 353-382.	1.3	54
31	New structural and petrological data on the Amasia ophiolites (NW Sevan–Akera suture zone, Lesser) Tj ETQq1 135-153.	1 0.78431 2.2	l4 rgBT /Ov 54
32	Structural Setting of the Neoarchean Terrains in the Commonwealth Bay Area (143-145°E), Terre Adélie Craton, East Antarctica. Gondwana Research, 2005, 8, 1-9.	6.0	53
33	Neogene to Quaternary stress field evolution in Lesser Caucasus and adjacent regions using fault kinematics analysis and volcanic cluster data. Geodinamica Acta, 2005, 18, 401-416.	2.2	48
34	Syn-kinematic emplacement of the Pangong metamorphic and magmatic complex along the Karakorum Fault (N Ladakh). Journal of Asian Earth Sciences, 2009, 34, 10-25.	2.3	48
35	The active fault system of SW Alps. Journal of Geodynamics, 2010, 49, 296-302.	1.6	47
36	Recent tectonic stress evolution in the Lesser Caucasus and adjacent regions. Geological Society Special Publication, 2010, 340, 393-408.	1.3	43

#	Article	IF	CITATIONS
37	Direct dating of midâ€crustal shear zones with synkinematic allanite: new <i>in situ</i> Uâ€Thâ€Pb geochronological approaches applied to the Mont Blanc massif. Terra Nova, 2014, 26, 29-37.	2.1	43
38	<i>P–T–t</i> estimation of deformation in lowâ€grade quartzâ€feldsparâ€bearing rocks using thermodynamic modelling and ⁴⁰ Ar/ ³⁹ Ar dating techniques: example of the Planâ€deâ€Phasy shear zone unit (Briançonnais Zone, Western Alps). Terra Nova, 2014, 26, 130-138.	2.1	43
39	A review of the plate convergence history of the East Anatolia-Transcaucasus region during the Variscan: Insights from the Georgian basement and its connection to the Eastern Pontides. Journal of Geodynamics, 2016, 96, 131-145.	1.6	39
40	The East Anatolia–Lesser Caucasus ophiolite: An exceptional case of large-scale obduction, synthesis of data and numerical modelling. Geoscience Frontiers, 2020, 11, 83-108.	8.4	39
41	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes)Syn-convergence extension, vertical pinching and contrasted metamorphic units on the western edge of the Gran Paradiso massif (French-Italian Alps) Geodinamica Acta. 2000. 13. 133-148.	2.2	38
42	⁴⁰ Ar/ ³⁹ Ar dating of synkinematic white mica: insights from fluid-rock reaction in low-grade shear zones (Mont Blanc Massif) and constraints on timing of deformation in the NW external Alps. Geological Society Special Publication, 2008, 299, 293-315.	1.3	38
43	Metamorphic and structural evolution of the Maures-Tanneron massif (SE Variscan chain): evidence of doming along a transpressional margin. Bulletin - Societie Geologique De France, 2009, 180, 217-230.	2.2	37
44	Geochemical variations and element transfer during shear-zone development and related episyenites at middle crust depths: insights from the Mont Blanc granite (French â€" Italian Alps). Geological Society Special Publication, 2005, 245, 373-396.	1.3	35
45	Superimposed Neoarchaean and Paleoproterozoic tectonics in the Terre Adélie Craton (East) Tj ETQq1 1 0.784 167, 316-338.	314 rgBT / 2.7	Overlock 1(35
46	A paleolatitude reconstruction of the South Armenian Block (Lesser Caucasus) for the Late Cretaceous: Constraints on the Tethyan realm. Tectonophysics, 2015, 644-645, 197-219.	2.2	35
47	Thermal and structural evolution of the external Western Alps: Insights from (U–Th–Sm)/He thermochronology and RSCM thermometry in the Aiguilles Rouges/Mont Blanc massifs. Tectonophysics, 2016, 683, 109-123.	2.2	35
48	Stress field evolution in the northwest Himalayan syntaxis, northern Pakistan. Tectonics, 2008, 27, .	2.8	34
49	The Late Neoproterozoic/Early Palaeozoic evolution of the West Congo Belt of NW Angola: geochronological (Uâ€Pb and Arâ€Ar) and petrostructural constraints. Terra Nova, 2012, 24, 238-247.	2.1	34
50	Multi-stage metamorphism in the South Armenian Block during the Late Jurassic to Early Cretaceous: Tectonics over south-dipping subduction of Northern branch of Neotethys. Journal of Asian Earth Sciences, 2015, 102, 4-23.	2.3	34
51	Evolution of gravity-driven rock slope failure and associated fracturing: Geological analysis and numerical modelling. Tectonophysics, 2012, 526-529, 157-166.	2.2	30
52	Variscan crustal thickening in the Maures-Tanneron massif (South Variscan belt, France): new in situ monazite U-Th-Pb chemical dating of high-grade rocks. Bulletin - Societie Geologique De France, 2015, 186, 145-169.	2.2	29
53	Style of Alpine tectonic deformation in the Castellane fold-and-thrust belt (SW Alps, France): Insights from balanced cross-sections. Tectonophysics, 2014, 633, 143-155.	2.2	28
54	Stable isotope and Ar/Ar evidence of prolonged multiscale fluid flow during exhumation of orogenic crust: Example from the Mont Blanc and Aar Massifs (NW Alps). Tectonics, 2014, 33, 1681-1709.	2.8	28

#	Article	IF	CITATIONS
55	Obduction of old oceanic lithosphere due to reheating and plate reorganization: Insights from numerical modelling and the NE Anatolia – Lesser Caucasus case example. Journal of Geodynamics, 2016, 96, 35-49.	1.6	28
56	Obduction triggered by regional heating during plate reorganization. Terra Nova, 2016, 28, 76-82.	2.1	27
57	Extension syn-convergence, poinçonnement vertical et unités métamorphiques contrastées en bordure ouest du Grand Paradis (Alpes Franco-Italiennes). Geodinamica Acta, 2000, 13, 133-148.	2.2	26
58	Sediments of Lake Vens (SW European Alps, France) record large-magnitude earthquake events. Journal of Paleolimnology, 2014, 51, 343-355.	1.6	26
59	Lithospheric transdimensional ambient-noise tomography of W-Europe: implications for crustal-scale geometry of the W-Alps. Geophysical Journal International, 2022, 229, 862-879.	2.4	26
60	New structural data on Late Paleozoic tectonics in the Kyrgyz Tien Shan (Central Asian Orogenic) Tj ETQq0 0 0 r	gBT /Over	lock 10 Tf 50
61	From seafloor spreading to obduction: Jurassic–Cretaceous evolution of the northern branch of the Neotethys in the Northeastern Anatolian and Lesser Caucasus regions. Geological Society Special Publication, 2017, 428, 41-60.	1.3	23
62	Long-lasting transcurrent tectonics in SW Alps evidenced by Neogene to present-day stress fields. Tectonophysics, 2014, 621, 85-100.	2.2	22
63	From intra-oceanic convergence to post-collisionnal evolution: the India-Asia convergence in NW Himalaya, from Cretaceous to present. Journal of the Virtual Explorer, 0, 08, .	0.0	22
64	Exhumation controlled by transcurrent tectonics: the Argentera–Mercantour massif (SW Alps). Terra Nova, 2011, 23, 116-126.	2.1	21
65	Late Quaternary incision rates in the Vésubie catchment area (Southern French Alps) from in situ-produced36Cl cosmogenic nuclide dating: Tectonic and climatic implications. Journal of Geophysical Research F: Earth Surface, 2014, 119, 1121-1135.	2.8	21
66	Progressive orocline formation in the Eastern Pontides–Lesser Caucasus. Geological Society Special Publication, 2017, 428, 117-143.	1.3	21
67	Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan). Geodinamica Acta, 2002, 15, 1-21.	2.2	20
68	Tectonometamorphic evolution of the Atbashi highâ€∢i>P units (Kyrgyz <scp>CAOB</scp> , Tien Shan): Implications for the closure of the Turkestan Ocean and continental subduction–exhumation of the South Kazakh continental margin. Journal of Metamorphic Geology, 2018, 36, 959-985.	3.4	20
69	Metamorphic zoning and geodynamic evolution of an inverted crustal section (Karakorum margin, N) Tj ETQq1 1 288-305.	0.78431 1.8	4 rgBT /Overl 19
70	Comment on "Alpine thermal and structural evolution of the highest external crystalline massif: The Mont Blanc―by P. H. Leloup, N. Arnaud, E. R. Sobel, and R. Lacassin. Tectonics, 2007, 26, n/a-n/a.	2.8	18
71	Paraglacial gravitational deformations in the SW Alps: a review of field investigations, $\langle \sup 10 \rangle$ sup > Be cosmogenic dating and physical modelling. Geological Society Special Publication, 2011, 351, 11-25.	1.3	18
72	Evidence for pre-Cretaceous history and partial Neogene (19–9Ma) reequilibration in the Karakorum (NW Himalayan Syntaxis) from 40Ar–39Ar amphibole dating. Journal of Asian Earth Sciences, 2006, 27, 371-391.	2.3	17

#	Article	IF	Citations
73	Deciphering orogenic evolution. Journal of Geodynamics, 2012, 56-57, 1-6.	1.6	17
74	Crustal-scale structure of South Tien Shan: implications for subduction polarity and Cenozoic reactivation. Geological Society Special Publication, 2017, 427, 197-229.	1.3	17
75	Inner gorges incision history: A proxy for deglaciation? Insights from Cosmic Ray Exposure dating (10Be and 36Cl) of river-polished surfaces (Tinée River, SW Alps, France). Earth and Planetary Science Letters, 2017, 457, 271-281.	4.4	17
76	Late Paleozoic Ice Age glaciers shaped East Antarctica landscape. Earth and Planetary Science Letters, 2019, 506, 123-133.	4.4	17
77	PALAEONTOLOGICAL (RADIOLARIAN) LATE JURASSIC AGE CONSTRAINT FOR THE STEPANAVAN OPHIOLITE (LESSER CAUCASUS, ARMENIA). Bulletin of the Geological Society of Greece, 2018, 40, 31.	0.5	17
78	Exhumation of Neogene gneiss domes between oblique crustal boundaries in south Karakorum (northwest Himalaya, Pakistan). , 2004, , .		16
79	Geochemistry of the Eocene magmatic rocks from the Lesser Caucasus area (Armenia): evidence of a subduction geodynamic environment. Geological Society Special Publication, 2017, 428, 73-98.	1.3	16
80	Extensional reactivation of the Penninic frontal thrust 3 Myr ago as evidenced by U–Pb dating on calcite in fault zone cataclasite. Solid Earth, 2021, 12, 237-251.	2.8	16
81	The deep structure and reactivation of the Kyrgyz Tien Shan: Modelling the past to better constrain the present. Tectonophysics, 2018, 746, 530-548.	2.2	15
82	Two-stage fluid flow and element transfers in shear zones during collision burial-exhumation cycle: Insights from the Mont Blanc Crystalline Massif (Western Alps). Journal of Geodynamics, 2016, 101, 88-108.	1.6	14
83	Recent, climate-driven river incision rate fluctuations in the Mercantour crystalline massif, southern French Alps. Quaternary Science Reviews, 2017, 165, 73-87.	3.0	14
84	Permian charnockites in the Pobeda area: Implications for Tarim mantle plume activity and HT metamorphism in the South Tien Shan range. Lithos, 2018, 304-307, 135-154.	1.4	14
85	Deglaciation history at the Alpineâ€Mediterranean transition (Argenteraâ€Mercantour, SW Alps) from ¹⁰ Be dating of moraines and glacially polished bedrock. Earth Surface Processes and Landforms, 2020, 45, 393-410.	2.5	14
86	Impact of rangeâ€parallel sediment transport on 2D thermoâ€mechanical models of mountain belts: ApplicationÂtoÂthe Kyrgyz Tien Shan. Terra Nova, 2018, 30, 279-288.	2.1	13
87	Pliocene to Quaternary deformation in the Var Basin (Nice, SE France) and its interpretation in terms of "slow-active―faulting. Swiss Journal of Geosciences, 2012, 105, 361-376.	1.2	11
88	Thermochronology of the highest central Asian massifs (Khan Tengri - Pobedi, SE Kyrgyztan): Evidence for Late Miocene (ca. 8ÂMa) reactivation of Permian faults and insights into building the Tian Shan. Journal of Asian Earth Sciences, 2020, 200, 104466.	2.3	9
89	Geometry and sedimentary evolution of the transpresssive Roquebrune-Cap Martin basin: implications on the kinematics and timing of the Nice arc deformation during Miocene times, SW Alps. Bulletin - Societie Geologique De France, 2011, 182, 493-506.	2.2	8
90	Presence and geodynamic significance of Cambro-Ordovician series of SE Karakoram (N Pakistan). Geodinamica Acta, 2002, 15, 1-21.	2.2	7

#	Article	IF	CITATIONS
91	Ediacaran to lower Cambrian basement in eastern George V Land (Antarctica): Evidence from U Pb dating of gneiss xenoliths and implications for the South Australia- East Antarctica connection. Lithos, 2018, 318-319, 219-229.	1.4	7
92	River incision and migration deduced from 36Cl cosmic-ray exposure durations: The Clue de la Cerise gorge in southern French Alps. Geomorphology, 2019, 330, 81-88.	2.6	7
93	The Pangong granulites of the Karakoram Fault (Western Tibet): vertical extrusion within a lithosphere-scale fault?. Comptes Rendus De L'Académie Des Sciences Earth & Planetary Sciences Série II, Sciences De La Terre Et Des Planà tes =, 2001, 332, 363-370.	0.2	6
94	Lithological nature of the subduction channel: Insights from the Karabakh suture zone (Lesser) Tj ETQq0 0 0 rgBT	/Overlock	10 Tf 50 62
95	Petrochronology of the Terre Adélie Craton (East Antarctica) evidences a long-lasting Proterozoic (1.7–1.5†Ga) tectono-metamorphic evolution — Insights for the connections with the Gawler Craton and Laurentia. Gondwana Research, 2020, 81, 21-57.	6.0	5
96	Interplay of fluvial incision and rockfalls in shaping periglacial mountain gorges. Geomorphology, 2021, 381, 107665.	2.6	5
97	The cold and hot collisional orogens: Thermal regimes and metallogeny of the Alpine versus Himalayan-Tibetan belts. Ore Geology Reviews, 2022, 141, 104671.	2.7	4
98	Protolith nature and <i>P</i> – <i>T</i> evolution of Variscan metamorphic rocks from the Allahyarlu complex, NW Iran. Geological Magazine, 2020, 157, 1853-1876.	1.5	3
99	Subgrain 40Ar/39Ar dating of museum-quality micas reveals intragrain heterogeneity. Chemical Geology, 2021, 573, 120215.	3.3	3
100	Reply to the comments on "Middle Cretaceous back-arc formation and arc evolution along the Asian margin: the Shyok Suture Zone on northern Ladakh (NW Himalaya)―by Weinberg and Dunlap. Tectonophysics, 2001, 340, 269-271.	2.2	2
101	Antarctic erosion history reconstructed by Terre Adélie moraine geochronology. Antarctic Science, 2020, 32, 382-395.	0.9	0