Juan Rodriguez-Vita

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2177955/publications.pdf

Version: 2024-02-01

33 papers 2,824 citations

393982 19 h-index 433756 31 g-index

41 all docs

41 docs citations

41 times ranked

4619 citing authors

#	Article	IF	CITATIONS
1	Isolation of Murine Primary Aortic Smooth Muscle Cells. Bio-protocol, 2021, 11, e3907.	0.2	6
2	Intraperitoneal Oil Application Causes Local Inflammation with Depletion of Resident Peritoneal Macrophages. Molecular Cancer Research, 2021, 19, 288-300.	1,5	21
3	The loss of DHX15 impairs endothelial energy metabolism, lymphatic drainage and tumor metastasis in mice. Communications Biology, 2021, 4, 1192.	2.0	5
4	Functionalized cerium oxide nanoparticles mitigate the oxidative stress and pro-inflammatory activity associated to the portal vein endothelium of cirrhotic rats. PLoS ONE, 2019, 14, e0218716.	1.1	13
5	Membrane Cholesterol Efflux Drives Tumor-Associated Macrophage Reprogramming and Tumor Progression. Cell Metabolism, 2019, 29, 1376-1389.e4.	7.2	261
6	Loss of the serine protease HTRA1 impairs smooth muscle cells maturation. Scientific Reports, 2019, 9, 18224.	1.6	16
7	MPDZ promotes DLL4-induced Notch signaling during angiogenesis. ELife, 2018, 7, .	2.8	22
8	Endothelial Notch1 Activity Facilitates Metastasis. Cancer Cell, 2017, 31, 355-367.	7.7	237
9	Notch1 induces endothelial senescence and promotes tumor progression. Cell Cycle, 2017, 16, 911-912.	1.3	5
10	Notch signaling facilitates crossing of endothelial barriers by tumor cells. Molecular and Cellular Oncology, 2017, 4, e1311828.	0.3	3
11	Notch controls endothelial cells. Oncoscience, 2017, 4, 45-46.	0.9	5
12	Overexpression of angiopoietin $\hat{\epsilon}$ in rats and patients with liver fibrosis. Therapeutic consequences of its inhibition. Liver International, 2015, 35, 1383-1392.	1.9	31
13	Pathophysiology of Portal Hypertension. , 2015, , 3631-3665.		8
14	Endothelial Akt1 mediates angiogenesis by phosphorylating multiple angiogenic substrates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 12865-12870.	3.3	120
15	Pathophysiology of Portal Hypertension. , 2014, , 1-41.		1
16	Down the liver sinusoidal endothelial cell (LSEC) hole. Is there a role for lipid rafts in LSEC fenestration?. Hepatology, 2013, 57, 1272-1274.	3.6	8
17	Statins Inhibit Angiotensin II/Smad Pathway and Related Vascular Fibrosis, by a TGF-β-Independent Process. PLoS ONE, 2010, 5, e14145.	1.1	58
18	The resolution of inflammation and cancer. Cytokine and Growth Factor Reviews, 2010, 21, 61-65.	3.2	71

#	Article	IF	Citations
19	CTGF Promotes Inflammatory Cell Infiltration of the Renal Interstitium by Activating NF-κB. Journal of the American Society of Nephrology: JASN, 2009, 20, 1513-1526.	3.0	110
20	Pharmacological Modulation of Epithelial Mesenchymal Transition Caused by Angiotensin II. Role of ROCK and MAPK Pathways. Pharmaceutical Research, 2008, 25, 2447-2461.	1.7	64
21	Inhibitory effect of interleukin- $\hat{1}^2$ on angiotensin II-induced connective tissue growth factor and type IV collagen production in cultured mesangial cells. American Journal of Physiology - Renal Physiology, 2008, 294, F149-F160.	1.3	47
22	Angiotensin II activates the Smad pathway during epithelial mesenchymal transdifferentiation. Kidney International, 2008, 74, 585-595.	2.6	110
23	Essential Role of TGF-Î ² /Smad Pathway on Statin Dependent Vascular Smooth Muscle Cell Regulation. PLoS ONE, 2008, 3, e3959.	1.1	49
24	TGF- \hat{l}^2 signaling in vascular fibrosis. Cardiovascular Research, 2007, 74, 196-206.	1.8	446
25	HMG-CoA Reductase Inhibitors Decrease Angiotensin II–Induced Vascular Fibrosis. Hypertension, 2007, 50, 377-383.	1.3	97
26	Angiotensin II: a key factor in the inflammatory and fibrotic response in kidney diseases. Nephrology Dialysis Transplantation, 2006, 21, 16-20.	0.4	291
27	Renal and vascular hypertension-induced inflammation: role of angiotensin II. Current Opinion in Nephrology and Hypertension, 2006, 15, 159-166.	1.0	132
28	The Rho-kinase pathway regulates angiotensin II-induced renal damage. Kidney International, 2005, 68, S39-S45.	2.6	47
29	Endothelin-1, via ETAReceptor and Independently of Transforming Growth Factor- \hat{l}^2 , Increases the Connective Tissue Growth Factor in Vascular Smooth Muscle Cells. Circulation Research, 2005, 97, 125-134.	2.0	108
30	Angiotensin II Activates the Smad Pathway in Vascular Smooth Muscle Cells by a Transforming Growth Factor-β–Independent Mechanism. Circulation, 2005, 111, 2509-2517.	1.6	303
31	Angiotensin IV Activates the Nuclear Transcription Factor-κB and Related Proinflammatory Genes in Vascular Smooth Muscle Cells. Circulation Research, 2005, 96, 965-973.	2.0	97
32	Modulation of Angiotensin II Effects, A Potential Novel Approach to Inflammatory and Immune Diseases. Current Medicinal Chemistry Anti-inflammatory & Anti-allergy Agents, 2003, 2, 379-394.	0.4	9
33	Tumor-Induced Cholesterol Efflux from Macrophages Drives IL-4 Mediated Reprogramming and Tumor Progression. SSRN Electronic Journal, 0, , .	0.4	1