
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2177199/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conjugated Mesopolymer Achieving 15% Efficiency Singleâ€Junction Organic Solar Cells. Advanced Science, 2022, 9, e2105430.	11.2	20
2	Quaternary Organic Solar Cells Enable Suppressed Energy Loss. Solar Rrl, 2022, 6, .	5.8	7
3	Synergistic enhancement in open-circuit voltage and photovoltaic performance via linear naphthyldithiophene building block. Polymer, 2022, 246, 124639.	3.8	2
4	The synergistic effect of fluorine atom and alkyl chain positions in enhancing organic photovoltaic open-circuit voltage and morphology miscibility. Sustainable Energy and Fuels, 2022, 6, 2490-2497.	4.9	2
5	Meniscusâ€Assisted Coating with Optimized Active‣ayer Morphology toward Highly Efficient Allâ€Polymer Solar Cells. Advanced Materials, 2022, 34, e2108508.	21.0	26
6	An end-capped strategy for crystalline polymer donor to improve the photovoltaic performance of non-fullerene solar cells. Science China Chemistry, 2022, 65, 964-972.	8.2	6
7	High selectivity of a novel D–A structured copolymer as a gas chromatographic stationary phase toward aromatic isomers. New Journal of Chemistry, 2022, 46, 10062-10066.	2.8	1
8	Efficient carbon-based CsPbI ₂ Br perovskite solar cells using bifunctional polymer modification. Sustainable Energy and Fuels, 2021, 5, 3867-3875.	4.9	2
9	Over 14% Efficiency Singleâ€Junction Organic Solar Cells Enabled by Reasonable Conformation Modulating in Naphtho[2,3â€b:6,7â€b′]difuran Based Polymer. Advanced Energy Materials, 2021, 11, 200395	4. ^{19.5}	19
10	Additive-Assisted Interfacial Engineering for Efficient Carbon-Based Perovskite Solar Cell Incorporated Dopant-Free Polymeric Hole Conductor PBDT(S)-T1. ACS Applied Energy Materials, 2021, 4, 5821-5829.	5.1	10
11	Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. Small Methods, 2021, 5, e2100493.	8.6	49
12	Recent advances of dithienobenzodithiophene-based organic semiconductors for organic electronics. Science China Chemistry, 2021, 64, 358-384.	8.2	30
13	Functionalized alkenyl side chains: a feasible strategy to improve charge transport and photovoltaic performance. Journal of Materials Chemistry C, 2020, 8, 2171-2177.	5.5	4
14	Chalcogenâ€Fused Perylene Diimidesâ€Based Nonfullerene Acceptors for Highâ€Performance Organic Solar Cells: Insight into the Effect of O, S, and Se. Solar Rrl, 2020, 4, 1900453.	5.8	21
15	Two Birds with One Stone: High Efficiency and Low Synthetic Cost for Benzotriazoleâ€Based Polymer Solar Cells by a Simple Chemical Approach. Advanced Energy Materials, 2020, 10, 2002142.	19.5	26
16	Benzodithiophenedione-based polymers: recent advances in organic photovoltaics. NPG Asia Materials, 2020, 12, .	7.9	96
17	Organic functional materials: recent advances in all-inorganic perovskite solar cells. Sustainable Energy and Fuels, 2020, 4, 2134-2148.	4.9	11
18	Methane-perylene diimide-based small molecule acceptors for high efficiency non-fullerene organic solar cells. Journal of Materials Chemistry C, 2019, 7, 10901-10907.	5.5	19

#	Article	IF	CITATIONS
19	High voltage all polymer solar cells with a polymer acceptor based on NDI and benzotriazole. Journal of Materials Chemistry C, 2019, 7, 9031-9037.	5.5	7
20	A Dopantâ€Free Polymeric Holeâ€Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells. Advanced Energy Materials, 2019, 9, 1902600.	19.5	89
21	lsomerization of Perylene Diimide Based Acceptors Enabling Highâ€Performance Nonfullerene Organic Solar Cells with Excellent Fill Factor. Advanced Science, 2019, 6, 1802065.	11.2	69
22	Ternary organic photovoltaics with alloyed donor exhibiting 75.53% fill factor and 12.26% efficiency. Organic Electronics, 2019, 71, 272-278.	2.6	3
23	Ternary Organic Solar Cells with Small Nonradiative Recombination Loss. ACS Energy Letters, 2019, 4, 1196-1203.	17.4	101
24	Nonfullerene Polymer Solar Cell with Large Active Area of 216 cm ² and High Power Conversion Efficiency of 7.7%. Solar Rrl, 2019, 3, 1900071.	5.8	25
25	Functionalizing tetraphenylpyrazine with perylene diimides (PDIs) as high-performance nonfullerene acceptors. Journal of Materials Chemistry C, 2019, 7, 14563-14570.	5.5	9
26	Steric Engineering of Alkylthiolation Side Chains to Finely Tune Miscibility in Nonfullerene Polymer Solar Cells. Advanced Energy Materials, 2019, 9, 1802686.	19.5	51
27	Novel π-Conjugated Polymer Based on an Extended Thienoquinoid. Chemistry of Materials, 2018, 30, 319-323.	6.7	17
28	A three-dimensional thiophene-annulated perylene bisimide as a fullerene-free acceptor for a high performance polymer solar cell with the highest PCE of 8.28% and a <i>V</i> _{OC} over 1.0 V. Journal of Materials Chemistry C, 2018, 6, 1136-1142.	5.5	41
29	Two wide-bandgap fluorine-substituted benzotriazole based terpolymers for efficient polymer solar cells. Dyes and Pigments, 2018, 155, 126-134.	3.7	5
30	Enhanced photovoltaic performance of polymer solar cells through design of a fused dithienosilolodithiophene structure with an enlarged π-conjugated system. Journal of Materials Chemistry C, 2018, 6, 4208-4216.	5.5	11
31	Benzothiadiazole Versus Thiophene: Influence of the Auxiliary Acceptor on the Photovoltaic Properties of Donor–Acceptorâ€Based Copolymers. Macromolecular Rapid Communications, 2018, 39, 1700547.	3.9	7
32	A new small molecule acceptor based on indaceno[2,1-b:6,5-b']dithiophene and thiophene-fused ending group for fullerene-free organic solar cells. Dyes and Pigments, 2018, 148, 263-269.	3.7	17
33	High Efficiency Non-fullerene Organic Tandem Photovoltaics Based on Ternary Blend Subcells. Nano Letters, 2018, 18, 7977-7984.	9.1	27
34	Efficient Ternary Organic Solar Cells with Two Compatible Nonâ€Fullerene Materials as One Alloyed Acceptor. Small, 2018, 14, e1802983.	10.0	55
35	Optimized Fibril Network Morphology by Precise Sideâ€Chain Engineering to Achieve Highâ€Performance Bulkâ€Heterojunction Organic Solar Cells. Advanced Materials, 2018, 30, e1707353.	21.0	271
36	Highâ€Performance Semitransparent Ternary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1800627.	14.9	109

#	Article	IF	CITATIONS
37	A novel bifunctional A–D–A type small molecule for efficient organic solar cells. Materials Chemistry Frontiers, 2018, 2, 1626-1630.	5.9	12
38	Controlling Molecular Weight to Achieve Highâ€Efficient Polymer Solar Cells With Unprecedented Fill Factor of 79% Based on Nonâ€Fullerene Small Molecule Acceptor. Solar Rrl, 2018, 2, 1800129.	5.8	16
39	Synergistic Effects of Fluorination and Alkylthiolation on the Photovoltaic Performance of the Poly(benzodithiophene-benzothiadiazole) Copolymers. ACS Applied Energy Materials, 2018, 1, 4686-4694.	5.1	9
40	Subtle Side-Chain Engineering of Random Terpolymers for High-Performance Organic Solar Cells. Chemistry of Materials, 2018, 30, 3294-3300.	6.7	64
41	Enhanced open-circuit voltage in methoxyl substituted benzodithiophene-based polymer solar cells. Science China Chemistry, 2017, 60, 243-250.	8.2	15
42	Highly Efficient Parallel-Like Ternary Organic Solar Cells. Chemistry of Materials, 2017, 29, 2914-2920.	6.7	152
43	A Novel Thiophene-Fused Ending Group Enabling an Excellent Small Molecule Acceptor for High-Performance Fullerene-Free Polymer Solar Cells with 11.8% Efficiency. Solar Rrl, 2017, 1, 1700044.	5.8	198
44	Alkyl Sideâ€Chain Engineering in Wideâ€Bandgap Copolymers Leading to Power Conversion Efficiencies over 10%. Advanced Materials, 2017, 29, 1604251.	21.0	213
45	Influence of 2,2-bithiophene and thieno[3,2-b] thiophene units on the photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Journal of Materials Chemistry C, 2017, 5, 4471-4479.	5.5	12
46	Recent Advances in Wideâ€Bandgap Photovoltaic Polymers. Advanced Materials, 2017, 29, 1605437.	21.0	276
47	Influence of alkyl chains on photovoltaic properties of 3D rylene propeller electron acceptors. Journal of Materials Chemistry A, 2017, 5, 3475-3482.	10.3	51
48	Rational design of perylenediimide-based polymer acceptor for efficient all-polymer solar cells. Organic Electronics, 2017, 50, 376-383.	2.6	14
49	High-performance wide-bandgap copolymers based on indacenodithiophene and indacenodithieno[3,2-b]thiophene units. Journal of Materials Chemistry C, 2017, 5, 7777-7783.	5.5	22
50	Mapping Polymer Donors toward Highâ€Efficiency Fullerene Free Organic Solar Cells. Advanced Materials, 2017, 29, 1604155.	21.0	360
51	Alloy Acceptor: Superior Alternative to PCBM toward Efficient and Stable Organic Solar Cells. Advanced Materials, 2016, 28, 8021-8028.	21.0	207
52	Ternary Organic Solar Cells Based on Two Highly Efficient Polymer Donors with Enhanced Power Conversion Efficiency. Advanced Energy Materials, 2016, 6, 1502109.	19.5	147
53	Influence of aromatic heterocycle of conjugated side chains on photovoltaic performance of benzodithiophene-based wide-bandgap polymers. Polymer Chemistry, 2016, 7, 4036-4045.	3.9	26
54	Effects of a heteroatomic benzothienothiophenedione acceptor on the properties of a series of wide-bandgap photovoltaic polymers. Journal of Materials Chemistry C, 2016, 4, 9052-9059.	5.5	10

#	Article	IF	CITATIONS
55	Organic Solar Cells: High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars (Small 37/2016). Small, 2016, 12, 5102-5102.	10.0	4
56	Ternary Organic Solar Cells Based on Two Compatible Nonfullerene Acceptors with Power Conversion Efficiency >10%. Advanced Materials, 2016, 28, 10008-10015.	21.0	254
57	High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016, 12, 5200-5207.	10.0	73
58	High-performance conjugated terpolymer-based organic bulk heterojunction solar cells. Journal of Materials Chemistry A, 2016, 4, 13930-13937.	10.3	29
59	Highâ€Performance Nonâ€Fullerene Organic Solar Cells Based on a Selenium ontaining Polymer Donor and a Twisted Perylene Bisimide Acceptor. Advanced Science, 2016, 3, 1600117.	11.2	76
60	Structure Evolution of Oligomer Fusedâ€Ring Electron Acceptors toward High Efficiency of As ast Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600854.	19.5	152
61	Three-Bladed Rylene Propellers with Three-Dimensional Network Assembly for Organic Electronics. Journal of the American Chemical Society, 2016, 138, 10184-10190.	13.7	449
62	A twisted monomeric perylenediimide electron acceptor for efficient organic solar cells. Science China Materials, 2016, 59, 427-434.	6.3	13
63	High-Performance Solution-Processed Non-Fullerene Organic Solar Cells Based on Selenophene-Containing Perylene Bisimide Acceptor. Journal of the American Chemical Society, 2016, 138, 375-380.	13.7	643
64	High-Performance Electron Acceptor with Thienyl Side Chains for Organic Photovoltaics. Journal of the American Chemical Society, 2016, 138, 4955-4961.	13.7	915
65	A Facile Planar Fused-Ring Electron Acceptor for As-Cast Polymer Solar Cells with 8.71% Efficiency. Journal of the American Chemical Society, 2016, 138, 2973-2976.	13.7	885
66	Research Progress of Benzo[1,2-b:4,5-b']difuran Organic Photovoltaic Materials. Chinese Journal of Organic Chemistry, 2016, 36, 687.	1.3	8
67	Organic Solar Cells Based on a 2D Benzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]difuran onjugated Polymer with Highâ€Power Conversion Efficiency. Advanced Materials, 2015, 27, 6969-6975.	21.0	151
68	Synergic Effects of Randomly Aligned SWCNT Mesh and Selfâ€Assembled Molecule Layer for Highâ€Performance, Lowâ€Bandgap, Polymer Solar Cells with Fast Charge Extraction. Advanced Materials Interfaces, 2015, 2, 1500324.	3.7	22
69	Singleâ€Junction Organic Solar Cells Based on a Novel Wideâ€Bandgap Polymer with Efficiency of 9.7%. Advanced Materials, 2015, 27, 2938-2944.	21.0	487
70	Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Science China Materials, 2015, 58, 213-222.	6.3	21
71	High Performance Organic Solar Cells Based on a Twisted Bayâ€Substituted Tetraphenyl Functionalized Perylenediimide Electron Acceptor. Advanced Energy Materials, 2015, 5, 1500032.	19.5	93
72	Non-Fullerene-Acceptor-Based Bulk-Heterojunction Organic Solar Cells with Efficiency over 7%. Journal of the American Chemical Society, 2015, 137, 11156-11162.	13.7	490

#	Article	IF	CITATIONS
73	Poly(benzo[2,1-b:3,4-b′]dithiophene-alt-isoindigo): a low bandgap polymer showing a high open circuit voltage in polymer solar cells. RSC Advances, 2015, 5, 269-273.	3.6	8
74	Highâ€Performance Solutionâ€Processed Smallâ€Molecule Solar Cells Based on a Dithienogermoleâ€Containing Molecular Donor. Advanced Energy Materials, 2015, 5, 1400987.	19.5	45
75	Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 2014, 47, 1595-1603.	15.6	667
76	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	21.0	137
77	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	21.0	306
78	Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928.	3.1	210
79	Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. Journal of Physical Chemistry C, 2013, 117, 9550-9557.	3.1	103
80	Synthesis and photovoltaic properties of D-Ï€-A copolymers based onÂthieno[3,2-b]thiophene bridge unit. Polymer, 2013, 54, 6150-6157.	3.8	18
81	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 3047.	3.9	45
82	PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and <i>Ï€</i> – <i>Ĩ€</i> Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 2013, 25, 3449-3455.	21.0	190
83	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	3.9	15
84	Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System. Advanced Materials, 2012, 24, 6536-6541.	21.0	229
85	Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy and Environmental Science, 2012, 5, 9551.	30.8	323
86	Synthesis and application of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene in conjugated poly Journal of Materials Chemistry, 2012, 22, 21362.	mer. 6.7	65
87	Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 6923-6929.	4.8	129
88	Application of Two-Dimensional Conjugated Benzo[1,2- <i>b</i> :4,5- <i>b</i> ′]dithiophene in Quinoxaline-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 3032-3038.	4.8	154
89	Synthesis of a 4,8-dialkoxy-benzo[1,2-b:4,5-b′]difuran unit and its application in photovoltaic polymer. Chemical Communications, 2012, 48, 3318.	4.1	105
90	Design, synthesis and photovoltaic properties of a new D–π–A polymer with extended π-bridge units. Journal of Materials Chemistry, 2012, 22, 21024.	6.7	65

#	Article	IF	CITATIONS
91	Poly(thieno[3,2- <i>b</i>]thiophene- <i>alt</i> -bithiazole): A D–A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-C ₆₀ Bisadduct Acceptor. Macromolecules, 2012, 45, 6930-6937.	4.8	71
92	High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5, 7943.	30.8	400
93	Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced Materials, 2012, 24, 3046-3052.	21.0	654
94	Improving the Ordering and Photovoltaic Properties by Extending <i>π</i> –Conjugated Area of Electronâ€Donating Units in Polymers with Dâ€A Structure. Advanced Materials, 2012, 24, 3383-3389.	21.0	298
95	Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chemical Communications, 2011, 47, 8904.	4.1	147
96	PBDTTTZ: A Broad Band Cap Conjugated Polymer with High Photovoltaic Performance in Polymer Solar Cells. Macromolecules, 2011, 44, 4035-4037.	4.8	159
97	Benzo[1,2-b:4,5-bâ€2]dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polymer Chemistry, 2011, 2, 2453.	3.9	272
98	Synthesis of a polythieno[3,4-b]thiophene derivative with a low-lying HOMO level and its application in polymer solar cells. Chemical Communications, 2011, 47, 8850.	4.1	57
99	A <i>p</i> â€Type Quantum Dot/Organic Donor:Acceptor Solarâ€Cell Structure for Extended Spectral Response. Advanced Energy Materials, 2011, 1, 528-533.	19.5	21
100	Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers. Angewandte Chemie - International Edition, 2011, 50, 9697-9702.	13.8	926
101	A Polybenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiophene Derivative with Deep HOMO Level and Its Application in Highâ€Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 1500-1503.	¹ 13.8	479
102	Alkylthio‣ubstituted Polythiophene: Absorption and Photovoltaic Properties. Macromolecular Rapid Communications, 2009, 30, 925-931.	3.9	100
103	Low band gap dithieno[3,2-b:2′,3′-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chemical Communications, 2009, , 5570.	4.1	128
104	An Easy and Effective Method To Modulate Molecular Energy Level of Poly(3-alkylthiophene) for High-Voc Polymer Solar Cells. Macromolecules, 2009, 42, 9217-9219.	4.8	96
105	Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules, 2009, 42, 4377-4380.	4.8	85
106	Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4- <i>c</i>]pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells. Macromolecules, 2009, 42, 6564-6571.	4.8	459
107	Novel twoâ€dimensional donor–acceptor conjugated polymers containing quinoxaline units: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2008, 46, 4038-4049.	2.3	69
108	A phenylenevinyleneâ€thiopheneâ€phenyleneethynylene copolymer: synthesis, characterization, and photovoltaic properties. Polymers for Advanced Technologies, 2008, 19, 865-871.	3.2	8

#	Article	IF	CITATIONS
109	Synthesis and Absorption Spectra of nâ€Type Conjugated Polymers Based on Perylene Diimide. Macromolecular Rapid Communications, 2008, 29, 1444-1448.	3.9	43
110	Branched poly(<i>p</i> â€phenylenevinylene): Synthesis, optical and electrochemical properties. Journal of Applied Polymer Science, 2008, 110, 1002-1008.	2.6	4
111	Polythiophene Derivative with the Simplest Conjugated-Side-Chain of Alkenyl: Synthesis and Applications in Polymer Solar Cells and Field-Effect Transistors. Journal of Physical Chemistry B, 2008, 112, 13476-13482.	2.6	27
112	Synthesis, optical and electroluminescent properties of an alternating copolymer of triphenylamine and fumaronitrile. Synthetic Metals, 2007, 157, 690-695.	3.9	11
113	Synthesis, Hole Mobility, and Photovoltaic Properties of Cross-Linked Polythiophenes with Vinyleneâ^'Terthiopheneâ^'Vinylene as Conjugated Bridge. Macromolecules, 2007, 40, 1831-1837.	4.8	81
114	Poly(quinoxaline vinylene) With Conjugated Phenylenevinylene Side Chain: A Potential Polymer Acceptor With Broad Absorption Band. Macromolecular Chemistry and Physics, 2007, 208, 1294-1300.	2.2	13
115	Alternating copolymers of electronâ€rich arylamine and electronâ€deficient 2,1,3â€benzothiadiazole: Synthesis, characterization and photovoltaic properties. Journal of Polymer Science Part A, 2007, 45, 3861-3871.	2.3	66
116	Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules, 2006, 39, 594-603.	4.8	185
117	Effect of Branched Conjugation Structure on the Optical, Electrochemical, Hole Mobility, and Photovoltaic Properties of Polythiophenes. Journal of Physical Chemistry B, 2006, 110, 26062-26067.	2.6	69
118	Synthesis, characterization and photovoltaic properties of poly{[1′,4′-bis-(thienyl-vinyl)]-2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene-vinylene}. Synthetic Metals, 2006, 156, 276-281.	3.9	16
119	Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. Journal of Polymer Science Part A, 2006, 44, 1279-1290.	2.3	40