List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2177041/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion <i>via</i> urea electrolysis. Energy and Environmental Science, 2018, 11, 1890-1897.	30.8	599
2	Ultrathin Co ₃ O ₄ Nanomeshes for the Oxygen Evolution Reaction. ACS Catalysis, 2018, 8, 1913-1920.	11.2	435
3	Surfactant-free atomically ultrathin rhodium nanosheet nanoassemblies for efficient nitrogen electroreduction. Journal of Materials Chemistry A, 2018, 6, 3211-3217.	10.3	376
4	Anodic Hydrazine Oxidation Assists Energy‣fficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angewandte Chemie - International Edition, 2018, 57, 7649-7653.	13.8	352
5	One-Pot Water-Based Synthesis of Pt–Pd Alloy Nanoflowers and Their Superior Electrocatalytic Activity for the Oxygen Reduction Reaction and Remarkable Methanol-Tolerant Ability in Acid Media. Journal of Physical Chemistry C, 2013, 117, 9826-9834.	3.1	246
6	Porous Trimetallic PtRhCu Cubic Nanoboxes for Ethanol Electrooxidation. Advanced Energy Materials, 2018, 8, 1801326.	19.5	240
7	Rational design of donor-ï€-acceptor conjugated microporous polymers for photocatalytic hydrogen production. Applied Catalysis B: Environmental, 2018, 228, 1-9.	20.2	215
8	Dibenzothiophene Dioxide Based Conjugated Microporous Polymers for Visible-Light-Driven Hydrogen Production. ACS Catalysis, 2018, 8, 8590-8596.	11.2	202
9	Conductive Metal–Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Advanced Science, 2020, 7, 2000012.	11.2	197
10	Autocatalysis and Selective Oxidative Etching Induced Synthesis of Platinum–Copper Bimetallic Alloy Nanodendrites Electrocatalysts. ACS Applied Materials & Interfaces, 2014, 6, 7301-7308.	8.0	166
11	Research advances in unsupported Pt-based catalysts for electrochemical methanol oxidation. Journal of Energy Chemistry, 2017, 26, 1067-1076.	12.9	163
12	Conjugated Microporous Polymers with Tunable Electronic Structure for High-Performance Potassium-Ion Batteries. ACS Nano, 2019, 13, 745-754.	14.6	162
13	Toward High Performance Thiopheneâ€Containing Conjugated Microporous Polymer Anodes for Lithiumâ€ion Batteries through Structure Design. Advanced Functional Materials, 2018, 28, 1705432.	14.9	162
14	Rhodium phosphide ultrathin nanosheets for hydrazine oxidation boosted electrochemical water splitting. Applied Catalysis B: Environmental, 2020, 270, 118880.	20.2	151
15	Polyallylamine-Functionalized Platinum Tripods: Enhancement of Hydrogen Evolution Reaction by Proton Carriers. ACS Catalysis, 2017, 7, 452-458.	11.2	142
16	Porous Pdâ€₽dO Nanotubes for Methanol Electrooxidation. Advanced Functional Materials, 2020, 30, 2000534.	14.9	138
17	Atomically ultrathin RhCo alloy nanosheet aggregates for efficient water electrolysis in broad pH range. Journal of Materials Chemistry A, 2019, 7, 16437-16446.	10.3	136
18	Nanocatalysts for Electrocatalytic Oxidation of Ethanol. ChemSusChem, 2019, 12, 2117-2132.	6.8	134

#	Article	IF	CITATIONS
19	Bimetallic Platinum–Rhodium Alloy Nanodendrites as Highly Active Electrocatalyst for the Ethanol Oxidation Reaction. ACS Applied Materials & Interfaces, 2018, 10, 19755-19763.	8.0	132
20	Platinum–Cobalt alloy networks for methanol oxidation electrocatalysis. Journal of Materials Chemistry, 2012, 22, 23659.	6.7	131
21	Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts toward Oxygen Reduction Reaction in Alkaline Media. ACS Catalysis, 2018, 8, 11287-11295.	11.2	129
22	Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. EScience, 2022, 2, 399-404.	41.6	127
23	Trimetallic PtAgCu@PtCu core@shell concave nanooctahedrons with enhanced activity for formic acid oxidation reaction. Nano Energy, 2015, 12, 824-832.	16.0	126
24	Iron doped cobalt phosphide ultrathin nanosheets on nickel foam for overall water splitting. Journal of Materials Chemistry A, 2019, 7, 20658-20666.	10.3	123
25	Morphological and Interfacial Control of Platinum Nanostructures for Electrocatalytic Oxygen Reduction. ACS Catalysis, 2016, 6, 5260-5267.	11.2	117
26	Au core-PtAu alloy shell nanowires for formic acid electrolysis. Journal of Energy Chemistry, 2022, 65, 94-102.	12.9	117
27	Polyethyleneimine functionalized platinum superstructures: enhancing hydrogen evolution performance by morphological and interfacial control. Chemical Science, 2017, 8, 8411-8418.	7.4	116
28	Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy, 2018, 54, 238-250.	16.0	114
29	Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chinese Journal of Catalysis, 2022, 43, 1535-1543.	14.0	111
30	Crystalline palladium–cobalt alloy nanoassemblies with enhanced activity and stability for the formic acid oxidation reaction. Applied Catalysis B: Environmental, 2013, 138-139, 229-235.	20.2	107
31	Arginine-Assisted Synthesis and Catalytic Properties of Single-Crystalline Palladium Tetrapods. ACS Applied Materials & Interfaces, 2014, 6, 22790-22795.	8.0	106
32	One-pot, water-based and high-yield synthesis of tetrahedral palladium nanocrystal decorated graphene. Nanoscale, 2013, 5, 8007.	5.6	105
33	Porous palladium phosphide nanotubes for formic acid electrooxidation. , 2022, 4, 283-293.		102
34	Atomically thick Ni(OH) ₂ nanomeshes for urea electrooxidation. Nanoscale, 2019, 11, 1058-1064.	5.6	101
35	Benzylamine oxidation boosted electrochemical water-splitting: Hydrogen and benzonitrile co-production at ultra-thin Ni2P nanomeshes grown on nickel foam. Applied Catalysis B: Environmental, 2020, 268, 118393.	20.2	100
36	Ultrathin Rh nanosheets as a highly efficient bifunctional electrocatalyst for isopropanol-assisted overall water splitting. Nanoscale, 2019, 11, 9319-9326.	5.6	97

#	Article	IF	CITATIONS
37	Interfacial Engineering Enhances the Electroactivity of Frameâ€Like Concave RhCu Bimetallic Nanocubes for Nitrate Reduction. Advanced Energy Materials, 2022, 12, .	19.5	96
38	Hydrothermal Synthesis and Catalytic Application of Ultrathin Rhodium Nanosheet Nanoassemblies. ACS Applied Materials & Interfaces, 2016, 8, 33635-33641.	8.0	94
39	Dendritic platinum–copper bimetallic nanoassemblies with tunable composition and structure: Arginine-driven self-assembly and enhanced electrocatalytic activity. Nano Research, 2016, 9, 755-765.	10.4	94
40	One-pot synthesis of three-dimensional platinum nanochain networks as stable and active electrocatalysts for oxygen reduction reactions. Journal of Materials Chemistry, 2012, 22, 13585.	6.7	92
41	Hierarchical porous Rh nanosheets for methanol oxidation reaction. Applied Catalysis B: Environmental, 2020, 264, 118520.	20.2	92
42	Substituent effect of conjugated microporous polymers on the photocatalytic hydrogen evolution activity. Journal of Materials Chemistry A, 2020, 8, 2404-2411.	10.3	91
43	Iridium Nanotubes as Bifunctional Electrocatalysts for Oxygen Evolution and Nitrate Reduction Reactions. ACS Applied Materials & amp; Interfaces, 2020, 12, 14064-14070.	8.0	91
44	Ultrafine Rh nanocrystals decorated ultrathin NiO nanosheets for urea electro-oxidation. Applied Catalysis B: Environmental, 2020, 265, 118567.	20.2	89
45	Nitrogen-doped phosphorene for electrocatalytic ammonia synthesis. Journal of Materials Chemistry A, 2020, 8, 15875-15883.	10.3	88
46	Unexpected catalytic activity of rhodium nanodendrites with nanosheet subunits for methanol electrooxidation in an alkaline medium. Nano Research, 2016, 9, 3893-3902.	10.4	86
47	Rhodium Nanosheets–Reduced Graphene Oxide Hybrids: A Highly Active Platinum-Alternative Electrocatalyst for the Methanol Oxidation Reaction in Alkaline Media. ACS Sustainable Chemistry and Engineering, 2017, 5, 10156-10162.	6.7	86
48	Facile synthesis of Pd–Co–P ternary alloy network nanostructures and their enhanced electrocatalytic activity towards hydrazine oxidation. Journal of Materials Chemistry A, 2014, 2, 1252-1256.	10.3	84
49	Ultrasonication-assisted and gram-scale synthesis of Co-LDH nanosheet aggregates for oxygen evolution reaction. Nano Research, 2020, 13, 79-85.	10.4	83
50	Preparation of highly dispersed and ultrafine Pd/C catalyst and its electrocatalytic performance for hydrazine electrooxidation. Applied Catalysis B: Environmental, 2011, 103, 388-396.	20.2	82
51	One-Pot Fabrication of Hollow and Porous Pd–Cu Alloy Nanospheres and Their Remarkably Improved Catalytic Performance for Hexavalent Chromium Reduction. ACS Applied Materials & Interfaces, 2016, 8, 30948-30955.	8.0	82
52	Selective Etching Induced Synthesis of Hollow Rh Nanospheres Electrocatalyst for Alcohol Oxidation Reactions. Small, 2018, 14, e1801239.	10.0	82
53	Facile synthesis of corallite-like Pt–Pd alloy nanostructures and their enhanced catalytic activity and stability for ethanol oxidation. Journal of Materials Chemistry A, 2014, 2, 13840.	10.3	81
54	Bicarbazole-based redox-active covalent organic frameworks for ultrahigh-performance energy storage. Chemical Communications, 2017, 53, 11334-11337.	4.1	81

#	Article	IF	CITATIONS
55	Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 5575-5582.	10.3	81
56	Hollow Pd–Sn Nanocrystals for Efficient Direct H ₂ O ₂ Synthesis: The Critical Role of Sn on Structure Evolution and Catalytic Performance. ACS Catalysis, 2018, 8, 3418-3423.	11.2	80
57	Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. Journal of Energy Chemistry, 2020, 47, 234-240.	12.9	80
58	Trimetallic PtRhNi alloy nanoassemblies as highly active electrocatalyst for ethanol electrooxidation. Nano Research, 2017, 10, 3324-3332.	10.4	79
59	Control Synthesis of Tubular Hyper-Cross-Linked Polymers for Highly Porous Carbon Nanotubes. ACS Applied Materials & Interfaces, 2017, 9, 20779-20786.	8.0	77
60	Glycerol oxidation assisted electrocatalytic nitrogen reduction: ammonia and glyceraldehyde co-production on bimetallic RhCu ultrathin nanoflake nanoaggregates. Journal of Materials Chemistry A, 2019, 7, 21149-21156.	10.3	77
61	Ptâ€Pdâ€Co Trimetallic Alloy Network Nanostructures with Superior Electrocatalytic Activity towards the Oxygen Reduction Reaction. Chemistry - A European Journal, 2014, 20, 585-590.	3.3	76
62	3D nitrogen-doped graphene aerogels as efficient electrocatalyst for the oxygen reduction reaction. Carbon, 2018, 139, 137-144.	10.3	75
63	N-doped carbon nanocages: Bifunctional electrocatalysts for the oxygen reduction and evolution reactions. Nano Research, 2018, 11, 1905-1916.	10.4	73
64	N,F-Codoped Carbon Nanocages: An Efficient Electrocatalyst for Hydrogen Peroxide Electroproduction in Alkaline and Acidic Solutions. ACS Sustainable Chemistry and Engineering, 2020, 8, 2883-2891.	6.7	72
65	Peryleneâ€Containing Conjugated Microporous Polymers for Photocatalytic Hydrogen Evolution. Macromolecular Chemistry and Physics, 2017, 218, 1700049.	2.2	71
66	Enhancing the Selectivity of H ₂ O ₂ Electrogeneration by Steric Hindrance Effect. ACS Applied Materials & Interfaces, 2018, 10, 42534-42541.	8.0	69
67	KOH-treated reduced graphene oxide: 100% selectivity for H2O2 electroproduction. Carbon, 2019, 153, 6-11.	10.3	69
68	Polyethylenimine-modified nickel phosphide nanosheets: interfacial protons boost the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 13770-13776.	10.3	69
69	Polyallylamine-directed green synthesis of platinum nanocubes. Shape and electronic effect codependent enhanced electrocatalytic activity. Physical Chemistry Chemical Physics, 2013, 15, 3793.	2.8	68
70	Pd@Pt core–shell tetrapods as highly active and stable electrocatalysts for the oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 20855-20860.	10.3	67
71	From monometallic Au nanowires to trimetallic AuPtRh nanowires: interface control for the formic acid electrooxidation. Journal of Materials Chemistry A, 2018, 6, 17164-17170.	10.3	67
72	Heterostructured Pd/PdO nanowires for selective and efficient CO2 electroreduction to CO. Journal of Energy Chemistry, 2022, 70, 407-413.	12.9	67

#	Article	IF	CITATIONS
73	Holey platinum nanotubes for ethanol electrochemical reforming in aqueous solution. Science Bulletin, 2021, 66, 2079-2089.	9.0	66
74	Ultrathin Rhodium Oxide Nanosheet Nanoassemblies: Synthesis, Morphological Stability, and Electrocatalytic Application. ACS Applied Materials & Interfaces, 2017, 9, 17195-17200.	8.0	65
75	Surfaceâ€Dependent Intermediate Adsorption Modulation on Iridiumâ€Modified Black Phosphorus Electrocatalysts for Efficient pHâ€Universal Water Splitting. Advanced Materials, 2021, 33, e2104638.	21.0	65
76	Highly branched platinum nanolance assemblies by polyallylamine functionalization as superior active, stable, and alcohol-tolerant oxygen reduction electrocatalysts. Nanoscale, 2014, 6, 8226-8234.	5.6	61
77	Au@Rh core-shell nanowires for hydrazine electrooxidation. Applied Catalysis B: Environmental, 2020, 278, 119269.	20.2	61
78	Nanobranched porous palladium–tin intermetallics: One-step synthesis and their superior electrocatalysis towards formic acid oxidation. Journal of Power Sources, 2015, 280, 141-146.	7.8	60
79	Thermal decomposition synthesis of functionalized PdPt alloy nanodendrites with high selectivity for oxygen reduction reaction. NPG Asia Materials, 2015, 7, e219-e219.	7.9	59
80	Molybdenumâ€Promoted Surface Reconstruction in Polymorphic Cobalt for Initiating Rapid Oxygen Evolution. Advanced Energy Materials, 2022, 12, 2103247.	19.5	59
81	Saltâ€Templated Construction of Ultrathin Cobalt Doped Iron Thiophosphite Nanosheets toward Electrochemical Ammonia Synthesis. Small, 2019, 15, e1903500.	10.0	57
82	Surface oxidized two-dimensional antimonene nanosheets for electrochemical ammonia synthesis under ambient conditions. Journal of Materials Chemistry A, 2020, 8, 4735-4739.	10.3	57
83	Ruthenium(<scp>iii</scp>) polyethyleneimine complexes for bifunctional ammonia production and biomass upgrading. Journal of Materials Chemistry A, 2019, 7, 25433-25440.	10.3	55
84	Highâ€Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate N ₁ O ₂ Coordination. Advanced Functional Materials, 2022, 32, .	14.9	55
85	Polyethyleneimine modified AuPd@PdAu alloy nanocrystals as advanced electrocatalysts towards the oxygen reduction reaction. Journal of Energy Chemistry, 2017, 26, 1153-1159.	12.9	53
86	One-step synthesis and catalytic properties of porous palladium nanospheres. Journal of Materials Chemistry, 2012, 22, 17604.	6.7	50
87	Highly active and durable platinum-lead bimetallic alloy nanoflowers for formic acid electrooxidation. Nanoscale, 2015, 7, 4894-4899.	5.6	50
88	Two-Dimensional Cobalt/N-Doped Carbon Hybrid Structure Derived from Metal–Organic Frameworks as Efficient Electrocatalysts for Hydrogen Evolution. ACS Sustainable Chemistry and Engineering, 2017, 5, 5646-5650.	6.7	50
89	Platinum-Silver Alloy Nanoballoon Nanoassemblies with Super Catalytic Activity for the Formate Electrooxidation. ACS Applied Energy Materials, 2018, 1, 1252-1258.	5.1	50
90	Self-template synthesis of defect-rich NiO nanotubes as efficient electrocatalysts for methanol oxidation reaction. Nanoscale, 2019, 11, 19783-19790.	5.6	50

Үи Снем

#	Article	IF	CITATIONS
91	Metal-organic interface engineering for boosting the electroactivity of Pt nanodendrites for hydrogen production. Journal of Energy Chemistry, 2020, 51, 105-112.	12.9	49
92	Green synthesis and catalytic properties of polyallylamine functionalized tetrahedral palladium nanocrystals. Applied Catalysis B: Environmental, 2013, 138-139, 167-174.	20.2	48
93	Anodic Hydrazine Oxidation Assists Energyâ€Efficient Hydrogen Evolution over a Bifunctional Cobalt Perselenide Nanosheet Electrode. Angewandte Chemie, 2018, 130, 7775-7779.	2.0	48
94	Highly Active Hollow RhCu Nanoboxes toward Ethylene Glycol Electrooxidation. Small, 2021, 17, e2006534.	10.0	48
95	Component-Dependent Electrocatalytic Activity of Ultrathin PdRh Alloy Nanocrystals for the Formate Oxidation Reaction. ACS Sustainable Chemistry and Engineering, 2019, 7, 2830-2836.	6.7	47
96	Hollow PtNi alloy nanospheres with enhanced activity and methanol tolerance for the oxygen reduction reaction. Nano Research, 2016, 9, 3494-3503.	10.4	46
97	Rh nanoroses for isopropanol oxidation reaction. Applied Catalysis B: Environmental, 2019, 259, 118082.	20.2	44
98	Advanced Applications and Challenges of Electropolymerized Conjugated Microporous Polymer Films. Advanced Functional Materials, 2021, 31, 2101861.	14.9	41
99	Bimetallic AuRh nanodendrites consisting of Au icosahedron cores and atomically ultrathin Rh nanoplate shells: synthesis and light-enhanced catalytic activity. NPG Asia Materials, 2017, 9, e407-e407.	7.9	39
100	Polyallylamine-Rh nanosheet nanoassembliesâ^'carbon nanotubes organic-inorganic nanohybrids: A electrocatalyst superior to Pt for the hydrogen evolution reaction. Journal of Power Sources, 2018, 385, 32-38.	7.8	39
101	PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. Journal of Materials Chemistry A, 2021, 9, 8444-8451.	10.3	39
102	Bifunctional Palladium Hydride Nanodendrite Electrocatalysts for Hydrogen Evolution Integrated with Formate Oxidation. ACS Applied Materials & amp; Interfaces, 2021, 13, 13149-13157.	8.0	39
103	Cobalt phosphide nanorings towards efficient electrocatalytic nitrate reduction to ammonia. Chemical Communications, 2021, 57, 11621-11624.	4.1	39
104	Sulfur in Hyper-cross-linked Porous Polymer as Cathode in Lithium–Sulfur Batteries with Enhanced Electrochemical Properties. ACS Applied Materials & Interfaces, 2017, 9, 34783-34792.	8.0	38
105	Fe/N Codoped Carbon Nanocages with Single-Atom Feature as Efficient Oxygen Reduction Reaction Electrocatalyst. ACS Applied Energy Materials, 2018, 1, 4982-4990.	5.1	38
106	PdCo Alloy Nanonetworksâ^'Polyallylamine Inorganic–Organic Nanohybrids toward the Oxygen Reduction Reaction. Advanced Materials Interfaces, 2018, 5, 1701322.	3.7	37
107	Anodic hydrazine electrooxidation boosted overall water electrolysis by bifunctional porous nickel phosphide nanotubes on nickel foam. Nanoscale, 2020, 12, 11526-11535.	5.6	37
108	In situ conversion of iron sulfide (FeS) to iron oxyhydroxide (γ-FeOOH) on N, S co-doped porous carbon nanosheets: An efficient electrocatalyst for the oxygen reduction reaction and zinc–air batteries. Journal of Colloid and Interface Science, 2020, 558, 323-333.	9.4	34

#	Article	IF	CITATIONS
109	Thin porous nanosheets of NiFe layered-double hydroxides toward a highly efficient electrocatalyst for water oxidation. International Journal of Hydrogen Energy, 2020, 45, 1948-1958.	7.1	34
110	Hydrogen and Potassium Acetate Co-Production from Electrochemical Reforming of Ethanol at Ultrathin Cobalt Sulfide Nanosheets on Nickel Foam. ACS Applied Materials & Interfaces, 2021, 13, 4026-4033.	8.0	33
111	Efficient Nitrate-to-Ammonia Electroreduction at Cobalt Phosphide Nanoshuttles. ACS Applied Materials & Interfaces, 2021, 13, 45521-45527.	8.0	33
112	Ethanol-tolerant polyethyleneimine functionalized palladium nanowires in alkaline media: the "molecular window gauze―induced the selectivity for the oxygen reduction reaction. Journal of Materials Chemistry A, 2015, 3, 21083-21089.	10.3	32
113	A one-pot gold seed-assisted synthesis of gold/platinum wire nanoassemblies and their enhanced electrocatalytic activity for the oxidation of oxalic acid. Nanoscale, 2016, 8, 2875-2880.	5.6	29
114	Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions. Journal of Materials Chemistry A, 2018, 6, 17771-17777.	10.3	29
115	Formic acid decomposition-inhibited intermetallic Pd3Sn2 nanonetworks for efficient formic acid electrooxidation. Journal of Power Sources, 2020, 450, 227615.	7.8	29
116	Polyethyleneimine-assisted synthesis of high-quality platinum/graphene hybrids: the effect of molecular weight on electrochemical properties. Journal of Materials Chemistry A, 2015, 3, 12000-12004.	10.3	28
117	Facile preparation of MnO/nitrogen-doped porous carbon nanotubes composites and their application in energy storage. Journal of Power Sources, 2019, 426, 33-39.	7.8	28
118	Bifunctional Pd@RhPd Core–Shell Nanodendrites for Methanol Electrolysis. ACS Applied Materials & Interfaces, 2021, 13, 35767-35776.	8.0	28
119	Cyanogel auto-reduction induced synthesis of PdCo nanocubes on carbon nanobowls: a highly active electrocatalyst for ethanol electrooxidation. Nanoscale, 2019, 11, 13477-13483.	5.6	27
120	0.2 V Electrolysis Voltage-Driven Alkaline Hydrogen Production with Nitrogen-Doped Carbon Nanobowl-Supported Ultrafine Rh Nanoparticles of 1.4 nm. ACS Applied Materials & Interfaces, 2019, 11, 35039-35049.	8.0	27
121	Facile synthesis of yolk–shell structured ZnFe ₂ O ₄ microspheres for enhanced electrocatalytic oxygen evolution reaction. Inorganic Chemistry Frontiers, 2019, 6, 511-520.	6.0	27
122	Sandwich-structured Au@polyallylamine@Pd nanostructures: tuning the electronic properties of the Pd shell for electrocatalysis. Journal of Materials Chemistry A, 2016, 4, 12020-12024.	10.3	25
123	Controllable synthesis of hierarchical nickel hydroxide nanotubes for high performance supercapacitors. Chemical Communications, 2018, 54, 559-562.	4.1	25
124	The electrocatalytic performance of carbon ball supported RhCo alloy nanocrystals for the methanol oxidation reaction in alkaline media. Journal of Power Sources, 2017, 371, 129-135.	7.8	24
125	Reduced graphene oxide supported PdNi alloy nanocrystals for the oxygen reduction and methanol oxidation reactions. Green Energy and Environment, 2018, 3, 375-383.	8.7	24
126	A ruthenium(<scp>iii</scp>) phosphonate complex on polyallylamine functionalized carbon nanotube multilayer films: self-assembly, direct electrochemistry, and electrocatalysis. Journal of Materials Chemistry B, 2014, 2, 102-109.	5.8	23

#	Article	IF	CITATIONS
127	Construction of nano-composites by enzyme entrapped in mesoporous dendritic silica particles for efficient biocatalytic degradation of antibiotics in wastewater. Chemical Engineering Journal, 2019, 375, 121968.	12.7	23
128	Facile synthesis of porous PdCu nanoboxes for efficient chromium(<scp>vi</scp>) reduction. CrystEngComm, 2019, 21, 3654-3659.	2.6	23
129	Facile controlled preparation of phosphonic acid-functionalized gold nanoparticles. Journal of Colloid and Interface Science, 2010, 351, 421-426.	9.4	22
130	Layerâ€Byâ€Layer Selfâ€Assembly of Sulphydrylâ€Functionalized Multiwalled Carbon Nanotubes and Phosphateâ€Functionalized Gold Nanoparticles: Detection of Hydrazine. ChemPlusChem, 2012, 77, 914-922.	2.8	22
131	Ï€â< [−] Ï€ interaction directed 2D FeNi-LDH nanosheets from 2D Hofmann-MOFs for the oxygen evolution reaction. Journal of Materials Chemistry A, 2022, 10, 1815-1820.	10.3	22
132	Plasma induced Fe-N active sites to improve the oxygen reduction reaction performance. , 2022, 1, 100005.		22
133	Atoms diffusion-induced phase engineering of platinum-gold alloy nanocrystals with high electrocatalytic performance for the formic acid oxidation reaction. Journal of Colloid and Interface Science, 2018, 514, 299-305.	9.4	21
134	Carbon nanobowls supported ultrafine iridium nanocrystals: An active and stable electrocatalyst for the oxygen evolution reaction in acidic media. Journal of Colloid and Interface Science, 2018, 529, 325-331.	9.4	21
135	Enzyme Immobilization in MOFâ€derived Porous NiO with Hierarchical Structure: An Efficient and Stable Enzymatic Reactor. ChemCatChem, 2019, 11, 2828-2836.	3.7	21
136	Co nanoparticles supported on three-dimensionally N-doped holey graphene aerogels for electrocatalytic oxygen reduction. Journal of Colloid and Interface Science, 2020, 559, 143-151.	9.4	21
137	Direct growth of holey Fe3O4-coupled Ni(OH)2 sheets on nickel foam for the oxygen evolution reaction. Chinese Journal of Catalysis, 2021, 42, 271-278.	14.0	21
138	Ether-linked porphyrin covalent organic framework with broadband optical switch. IScience, 2021, 24, 102526.	4.1	21
139	Holey cobalt oxyhydroxide nanosheets for the oxygen evolution reaction. Journal of Materials Chemistry A, 2021, 9, 3297-3302.	10.3	21
140	Ethylenediaminetetraacetic acid mediated synthesis of palladium nanowire networks and their enhanced electrocatalytic performance for the hydrazine oxidation reaction. Electrochimica Acta, 2015, 176, 125-129.	5.2	20
141	Bisulfoneâ€Functionalized Organic Polymer Photocatalysts for Highâ€Performance Hydrogen Evolution. ChemSusChem, 2020, 13, 369-375.	6.8	20
142	Photocatalytic performance of AgCl@Ag core–shell nanocubes for the hexavalent chromium reduction. Journal of Materials Science, 2018, 53, 12030-12039.	3.7	18
143	Reduced graphene oxide supported platinum nanocubes composites: one-pot hydrothermal synthesis and enhanced catalytic activity. Nanotechnology, 2015, 26, 065603.	2.6	17
144	Engineering PdAu Nanowires for Highly Efficient Direct Methane Conversion to Methanol under Mild Conditions. Journal of Physical Chemistry C, 2021, 125, 12713-12720.	3.1	17

#	Article	IF	CITATIONS
145	Facile synthesis and electrocatalytic properties of dendritic palladium nanostructures. CrystEngComm, 2014, 16, 10445-10450.	2.6	15
146	Rhodium–Cobalt Alloy Nanotubes Toward Methanol Oxidation Reaction. Small Structures, 2022, 3, .	12.0	15
147	Rhodium nanodendrites catalyzed alkaline methanol oxidation reaction in direct methanol fuel cells. Sustainable Materials and Technologies, 2022, 31, e00379.	3.3	13
148	Thin NiFeCr-LDHs nanosheets promoted by g-C ₃ N ₄ : a highly active electrocatalyst for oxygen evolution reaction. Nanotechnology, 2019, 30, 494001.	2.6	12
149	Two-dimensional cobalt prussian blue nanosheets: Template-directed synthesis and electrocatalytic oxygen evolution property. Electrochimica Acta, 2020, 333, 135544.	5.2	12
150	Water-based synthesis and sensing application of polyallylamine functionalized platinum nanodendrite assemblies. Journal of Materials Chemistry A, 2013, 1, 14874.	10.3	11
151	A hydrogel-coated porous sulfur particle as volume-accommodable, conductivity-improved, and polysulfide-adsorptive cathode for lithiumâ€'sulfur batteries. Journal of Electroanalytical Chemistry, 2019, 841, 26-35.	3.8	11
152	<i>In situ</i> bubble template-assisted synthesis of phosphonate-functionalized Rh nanodendrites and their catalytic application. CrystEngComm, 2017, 19, 2946-2952.	2.6	10
153	Phase engineering of dual active 2D Bi ₂ O ₃ -based nanocatalysts for alkaline hydrogen evolution reaction electrocatalysis. Journal of Materials Chemistry A, 2022, 10, 808-817.	10.3	10
154	Carbon nanobowl supported chemically functionalized PtRh nanocrystals: a highly active and methanol tolerant electrocatalyst towards the oxygen reduction reaction. Journal of Materials Chemistry A, 2021, 9, 25621-25628.	10.3	9
155	Trimetallic RhNiFe Phosphide Nanosheets for Electrochemical Reforming of Ethanol. ACS Applied Nano Materials, 2022, 5, 4948-4957.	5.0	9
156	Interface self-assembly preparation of multi-element doped carbon nanobowls with high electrocatalysis activity for oxygen reduction reaction. Journal of Colloid and Interface Science, 2019, 533, 569-577.	9.4	8
157	Facile synthesis and electrocatalytic application of phosphonate functionalized platinum nanodendrites. CrystEngComm, 2013, 15, 8929.	2.6	6
158	Electrochemical Adsorption of Cs ⁺ Ions on H-Todorokite Nanorods. ACS Omega, 2020, 5, 1062-1067.	3.5	6
159	Self‣upported FeP oMoP Hierarchical Nanostructures for Efficient Hydrogen Evolution. Chemistry - an Asian Journal, 2020, 15, 1590-1597.	3.3	6
160	PdAuAg Alloy Nanoparticles on Nickel Foam as Anode for Passive Air-Breathing Formate Fuel Cell. Journal of the Electrochemical Society, 2021, 168, 064519.	2.9	6
161	Phosphonate-functionalized three-dimensional gold nanocomposite as a sensitive interface for facile electrochemical stripping detection of trace copper(II) ions. Journal of Electroanalytical Chemistry, 2015, 754, 1-7.	3.8	5
162	One-dimensional cobalt oxide nanotubes with rich defect for oxygen evolution reaction. Nanotechnology, 2022, 33, 075401.	2.6	5

#	Article	IF	CITATIONS
163	Quinone-based conjugated polymer cathodes synthesized <i>via</i> direct arylation for high performance Li-organic batteries. Chemical Communications, 2022, 58, 4763-4766.	4.1	5
164	A Wide-Band Gap Copolymer Donor for Efficient Fullerene-Free Solar Cells. ACS Omega, 2019, 4, 14800-14804.	3.5	4
165	In Situ Growth of Transition Metal Nanoparticles on Aluminosilicate Minerals for Oxygen Evolution. Advanced Energy and Sustainability Research, 2021, 2, 2100057.	5.8	3
166	Hollow and mesoporous lipstick-like nitrogen-doped carbon with incremented catalytic activity for oxygen reduction reaction. Nanotechnology, 2021, 32, 095401.	2.6	3