Liana Oighenstein Anderson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176959/publications.pdf

Version: 2024-02-01

96 papers 7,456 citations

36 h-index 83 g-index

105 all docs

105 docs citations

105 times ranked 9031 citing authors

#	Article	IF	CITATIONS
1	Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 14637-14641.	7.1	780
2	21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 2018, 9, 536.	12.8	485
3	Spatial patterns and fire response of recent Amazonian droughts. Geophysical Research Letters, 2007, 34, .	4.0	399
4	Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature, 2014, 506, 76-80.	27.8	398
5	Amazonia as a carbon source linked to deforestation and climate change. Nature, 2021, 595, 388-393.	27.8	371
6	Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 2011, 8, 1415-1440.	3.3	340
7	Persistent effects of a severe drought on Amazonian forest canopy. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 565-570.	7.1	334
8	Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends in Ecology and Evolution, 2007, 22, 414-423.	8.7	295
9	Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 1779-1785.	4.0	290
10	Comprehensive assessment of carbon productivity, allocation and storage in three Amazonian forests. Global Change Biology, 2009, 15, 1255-1274.	9.5	280
11	The Brazilian Amazon deforestation rate in 2020 is the greatest of the decade. Nature Ecology and Evolution, 2021, 5, 144-145.	7.8	251
12	Above- and below-ground net primary productivity across ten Amazonian forests on contrasting soils. Biogeosciences, 2009, 6, 2759-2778.	3.3	221
13	Environmental change and the carbon balance of <scp>A</scp> mazonian forests. Biological Reviews, 2014, 89, 913-931.	10.4	208
14	Remote sensing detection of droughts in Amazonian forest canopies. New Phytologist, 2010, 187, 733-750.	7.3	174
15	Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Global Change Biology, 2016, 22, 92-109.	9.5	165
16	Climate seasonality limits leaf carbon assimilation and wood productivity in tropical forests. Biogeosciences, 2016, 13, 2537-2562.	3.3	108
17	Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change. Nature Communications, 2021, 12, 1785.	12.8	99
18	Rapid Assessment of Annual Deforestation in the Brazilian Amazon Using MODIS Data. Earth Interactions, 2005, 9, 1-22.	1.5	98

#	Article	IF	CITATIONS
19	Mapping regional land cover with MODIS data for biological conservation: Examples from the Greater Yellowstone Ecosystem, USA and Par� State, Brazil. Remote Sensing of Environment, 2004, 92, 67-83.	11.0	95
20	Relationships between phenology, radiation and precipitation in the Amazon region. Global Change Biology, 2011, 17, 2245-2260.	9.5	89
21	Effects of climate and landâ€use change scenarios on fire probability during the 21st century in the Brazilian Amazon. Global Change Biology, 2019, 25, 2931-2946.	9.5	87
22	Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Science Advances, 2020, 6, .	10.3	82
23	Vulnerability of Amazonian forests to repeated droughts. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20170411.	4.0	80
24	Drought-induced Amazonian wildfires instigate a decadal-scale disruption of forest carbon dynamics. Philosophical Transactions of the Royal Society B: Biological Sciences, 2018, 373, 20180043.	4.0	79
25	Deforestation-Induced Fragmentation Increases Forest Fire Occurrence in Central Brazilian Amazonia. Forests, 2018, 9, 305.	2.1	79
26	Disentangling the contribution of multiple land covers to fireâ€mediated carbon emissions in Amazonia during the 2010 drought. Global Biogeochemical Cycles, 2015, 29, 1739-1753.	4.9	63
27	Physical Landscape Correlates of the Expansion of Mechanized Agriculture in Mato Grosso, Brazil. Earth Interactions, 2005, 9, 1-18.	1.5	61
28	Assessment of Deforestation in Near Real Time Over the Brazilian Amazon Using Multitemporal Fraction Images Derived From Terra MODIS. IEEE Geoscience and Remote Sensing Letters, 2005, 2, 315-318.	3.1	54
29	The Impact of Land Cover Change on Surface Energy and Water Balance in Mato Grosso, Brazil. Earth Interactions, 2006, 10, 1-17.	1.5	54
30	Climatic and anthropogenic drivers of northern Amazon fires during the 2015–2016 El Niño event. Ecological Applications, 2017, 27, 2514-2527.	3.8	49
31	Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land, 2020, 9, 516.	2.9	48
32	Fire Responses to the 2010 and 2015/2016 Amazonian Droughts. Frontiers in Earth Science, 2019, 7, .	1.8	46
33	Benchmark maps of 33 years of secondary forest age for Brazil. Scientific Data, 2020, 7, 269.	5.3	46
34	Application of remote sensing to understanding fire regimes and biomass burning emissions of the tropical Andes. Global Biogeochemical Cycles, 2014, 28, 480-496.	4.9	44
35	Influence of landscape heterogeneity on spatial patterns of wood productivity, wood specific density and above ground biomass in Amazonia. Biogeosciences, 2009, 6, 1883-1902.	3.3	40
36	Using learning networks to understand complex systems: a case study of biological, geophysical and social research in the Amazon. Biological Reviews, 2011, 86, 457-474.	10.4	39

#	Article	IF	Citations
37	Translating Fire Impacts in Southwestern Amazonia into Economic Costs. Remote Sensing, 2019, 11, 764.	4.0	35
38	Increased Wildfire Risk Driven by Climate and Development Interactions in the Bolivian Chiquitania, Southern Amazonia. PLoS ONE, 2016, 11, e0161323.	2.5	34
39	Large-scale heterogeneity of Amazonian phenology revealed from 26-year long AVHRR/NDVI time-series. Environmental Research Letters, 2013, 8, 024011.	5.2	32
40	Seasonality and drought effects of Amazonian forests observed from multi-angle satellite data. Remote Sensing of Environment, 2015, 171, 278-290.	11.0	32
41	Amazonian forest degradation must be incorporated into the COP26 agenda. Nature Geoscience, 2021, 14, 634-635.	12.9	32
42	Estimating the multi-decadal carbon deficit of burned Amazonian forests. Environmental Research Letters, 2020, 15, 114023.	5.2	32
43	Spatial trends in leaf size of Amazonian rainforest trees. Biogeosciences, 2009, 6, 1563-1576.	3.3	31
44	Modelling fire probability in the Brazilian Amazon using the maximum entropy method. International Journal of Wildland Fire, 2016, 25, 955.	2.4	29
45	Smoke pollution's impacts in Amazonia. Science, 2020, 369, 634-635.	12.6	28
46	El Ni $ ilde{A}$ \pm o Driven Changes in Global Fire 2015/16. Frontiers in Earth Science, 2020, 8, .	1.8	28
47	Intercomparison of Burned Area Products and Its Implication for Carbon Emission Estimations in the Amazon. Remote Sensing, 2020, 12, 3864.	4.0	27
48	Spatiotemporal Rainfall Trends in the Brazilian Legal Amazon between the Years 1998 and 2015. Water (Switzerland), 2018, 10, 1220.	2.7	26
49	Extreme rainfall and its impacts in the Brazilian Minas Gerais state in January 2020: Can we blame climate change?. Climate Resilience and Sustainability, 2022, 1, .	2.3	26
50	Spatial distribution and functional significance of leaf lamina shape in Amazonian forest trees. Biogeosciences, 2009, 6, 1577-1590.	3.3	25
51	The extent of 2014 forest fragmentation in the Brazilian Amazon. Regional Environmental Change, 2016, 16, 2485-2490.	2.9	24
52	Amazon methane budget derived from multi-year airborne observations highlights regional variations in emissions. Communications Earth & Environment, 2021, 2, .	6.8	24
53	Burning in southwestern Brazilian Amazonia, 2016–2019. Journal of Environmental Management, 2021, 286, 112189.	7.8	23
54	Biome-Scale Forest Properties in Amazonia Based on Field and Satellite Observations. Remote Sensing, 2012, 4, 1245-1271.	4.0	22

#	Article	IF	Citations
55	Predicting fires for policy making: Improving accuracy of fire brigade allocation in the Brazilian Amazon. Ecological Economics, 2020, 169, 106501.	5.7	21
56	Detecção de cicatrizes de áreas queimadas baseada no modelo linear de mistura espectral e imagens Ãndice de vegetação utilizando dados multitemporais do sensor MODIS/TERRA no estado do Mato Grosso, Amazônia brasileira. Acta Amazonica, 2005, 35, 445-456.	0.7	20
57	Re-thinking socio-economic impact assessments of disasters: The 2015 flood in Rio Branco, Brazilian Amazon. International Journal of Disaster Risk Reduction, 2018, 31, 212-219.	3.9	19
58	Seasonality of vegetation types of South America depicted by moderate resolution imaging spectroradiometer (MODIS) time series. International Journal of Applied Earth Observation and Geoinformation, 2018, 69, 148-163.	2.8	19
59	Fraction images for monitoring intra-annual phenology of different vegetation physiognomies in Amazonia. International Journal of Remote Sensing, 2011, 32, 387-408.	2.9	18
60	Evaluation of geostatistical techniques to estimate the spatial distribution of aboveground biomass in the Amazon rainforest using high-resolution remote sensing data. Acta Amazonica, 2016, 46, 151-160.	0.7	18
61	An RS-GIS-Based ComprehensiveImpact Assessment of Floodsâ€"A Case Study in Madeira River, Western Brazilian Amazon. IEEE Geoscience and Remote Sensing Letters, 2017, 14, 1614-1617.	3.1	17
62	HOW STRONG IS THE RELATIONSHIP BETWEEN RAINFALL VARIABILITY AND CAATINGA PRODUCTIVITY? A CASE STUDY UNDER A CHANGING CLIMATE. Anais Da Academia Brasileira De Ciencias, 2018, 90, 2121-2127.	0.8	17
63	Improving the spatialâ€ŧemporal analysis of Amazonian fires. Global Change Biology, 2021, 27, 469-471.	9.5	17
64	Cover: Multitemporal fraction images derived from Terra MODIS data for analysing land cover change over the Amazon region. International Journal of Remote Sensing, 2005, 26, 2251-2257.	2.9	16
65	South American fires and their impacts on ecosystems increase with continued emissions. Climate Resilience and Sustainability, 2022, 1, e8.	2.3	15
66	Vegetation chlorophyll estimates in the Amazon from multi-angle MODIS observations and canopy reflectance model. International Journal of Applied Earth Observation and Geoinformation, 2017, 58, 278-287.	2.8	14
67	Chlorophyll Fluorescence Data Reveals Climate-Related Photosynthesis Seasonality in Amazonian Forests. Remote Sensing, 2017, 9, 1275.	4.0	14
68	Fire, Tractors, and Health in the Amazon: A Cost-Benefit Analysis of Fire Policy. Land Economics, 2019, 95, 409-434.	0.9	14
69	Forest Fragmentation and Fires in the Eastern Brazilian Amazon–Maranhão State, Brazil. Fire, 2022, 5, 77.	2.8	13
70	Relationship between Biomass Burning Emissions and Deforestation in Amazonia over the Last Two Decades. Forests, 2021, 12, 1217.	2.1	12
71	Spatio-temporal variation in dry season determines the Amazonian fire calendar. Environmental Research Letters, 2021, 16, 125009.	5.2	11
72	Development of a Point-based Method for Map Validation and Confidence Interval Estimation: A Case Study of Burned Areas in Amazonia. Journal of Remote Sensing & GIS, 2017, 06, .	0.3	10

#	Article	IF	CITATIONS
73	Dinâmica das Queimadas no Cerrado do Estado do Maranhão, Nordeste do Brasil. Revista Do Departamento De Geografia, 0, 35, 1-14.	0.0	10
74	Modelo conceitual de sistema de alerta e de gestão de riscos e desastres associados a incêndios florestais e desafios para polÃticas públicas no Brasil. Territorium: Revista Portuguesa De Riscos, Prevenção E Segurança, 2019, , 43-61.	0.1	10
75	Hospitalization Due to Fire-Induced Pollution in the Brazilian Legal Amazon from 2005 to 2018. Remote Sensing, 2022, 14, 69.	4.0	10
76	Determination of Region of Influence Obtained by Aircraft Vertical Profiles Using the Density of Trajectories from the HYSPLIT Model. Atmosphere, 2020, 11 , 1073 .	2.3	9
77	The 2020 Brazilian Pantanal fires. Anais Da Academia Brasileira De Ciencias, 2021, 93, e20210077.	0.8	9
78	An alert system for Seasonal Fire probability forecast for South American Protected Areas. Climate Resilience and Sustainability, 2022, $1,\ldots$	2.3	9
79	New approach for drought assessment: A case study in the northern region of Minas Gerais. International Journal of Disaster Risk Reduction, 2021, 53, 102019.	3.9	8
80	The Sketch Map Tool Facilitates the Assessment of OpenStreetMap Data for Participatory Mapping. ISPRS International Journal of Geo-Information, 2021, 10, 130.	2.9	8
81	Assessing the Influence of Climate Extremes on Ecosystems and Human Health in Southwestern Amazon Supported by the PULSE-Brazil Platform. American Journal of Climate Change, 2016, 05, 399-416.	0.9	7
82	Anthropogenic climate change contribution to wildfire-prone weather conditions in the Cerrado and Arc of deforestation. Environmental Research Letters, 2021, 16, 094051.	5.2	6
83	Compound impact of land use and extreme climate on the 2020 fire record of the Brazilian Pantanal. Global Ecology and Biogeography, 2022, 31, 1960-1975.	5.8	6
84	Identifying localâ€scale meteorological conditions favorable to large fires in Brazil. Climate Resilience and Sustainability, 2022, 1, .	2.3	5
85	Attributing the 2015/2016 Amazon basin drought to anthropogenic influence. Climate Resilience and Sustainability, 2022, 1 , .	2.3	5
86	Fires in Amazonia. Ecological Studies, 2016, , 301-329.	1.2	4
87	Spatial patterns of the canopy stress during 2005 drought in Amazonia. , 2007, , .		3
88	Burned Area Detection in the Brazilian Amazon using Spectral Indices and GEOBIA. Revista Brasileira De Cartografia, 2020, 72, 253-269.	0.2	3
89	Multitemporal analysis of the spectral response of scars of burnt areas using the Landsat/ETM sensor. , 2007, , .		1
90	Exploring the Biophysical Drivers of Amazon Phenology: Preparing Data Sets to Improve Dynamic Global Vegetation Models., 2008,,.		1

#	Article	IF	CITATIONS
91	RELATOS DE EXPERIÊNCIAS DOS PROJETOS DE PESQUISA MAP-FIRE E ACRE-QUEIMADAS: DIAGNÓSTICO E PERSPECTIVAS DE MITIGAÇÃO ENVOLVENDO A SOCIEDADE PARA REDUÇÃO DO RISCO E DE IMPACTOS ASSOCIADOS A INCÊNDIOS FLORESTAIS. Uáquiri, 2020, 2, 14.	0.0	1
92	Innovative fire policy in the Amazon: A statistical Hicks-Kaldor analysis. Ecological Economics, 2022, 191, 107248.	5.7	1
93	Using Fraction Images to Study Natural Land Cover Changes in the Amazon. , 2006, , .		0
94	Template phenology for vegetation models. , 2009, , .		0
95	Mudanças na exposição da população à fumaça gerada por incêndios florestais na Amazônia: o que dizem os dados sobre desastres e qualidade do ar?. Saêde Em Debate, 2020, 44, 284-302.	0.5	0
96	Near Real-Time Fire Detection and Monitoring in the MATOPIBA Region, Brazil. Remote Sensing, 2022, 14, 3141.	4.0	0