
Baptiste Girault

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176956/publications.pdf Version: 2024-02-01

Experimental Investigation of Allotropic Transformation of Cobalt: Influence of Temperature Cycle, Mechanical Loading and Starting Microstructure. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2021, 52, 1477-1491.	2.2	
		6
Lattice strain development in an alpha titanium alloy studied using synchrotron and neutron diffraction. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141489.	5.6	4
Study of Residual Stresses in Additively Manufactured Ti-6Al-4V by Neutron Diffraction Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 951-961.	2.2	20
Temperature effect on strain-induced phase transformation of cobalt. Materials Letters, 2020, 281, 128812.	2.6	11
Electrochemical characteristics of NixN thin films deposited by DC and HiPIMS reactive magnetron sputtering. Thin Solid Films, 2019, 669, 659-664.	1.8	9
In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization. , 2018, , .		1
In situ lattice strains analysis in titanium during a uniaxial tensile test. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 395-403.	5.6	8
Modelling of elastoplastic behaviour of metallic materials with a homogenization approach: a self-consistent model based on dislocation densities. Acta Mechanica, 2015, 226, 2715-2727.	2.1	2
Residual stress fields analysis in rolled Zircaloy-4 plates: Grazing incidence diffraction and elastoplastic self-consistent model. Acta Materialia, 2014, 71, 136-144.	7.9	20
Controlled nanostructuration of polycrystalline tungsten thin films. Journal of Applied Physics, 2013, 113, .	2.5	20
Copper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films. Journal of Applied Physics, 2011, 109, 014305.	2.5	22
Strength Effects in Micropillars of a Dispersion Strengthened Superalloy. Advanced Engineering Materials, 2010, 12, 385-388.	3.5	66
Elastic behaviour of titanium dioxide films on polyimide substrates studied by in situ tensile testing in a X-ray diffractometer. Nuclear Instruments & Methods in Physics Research B, 2010, 268, 365-369.	1.4	12
Development of a Biaxial Tensile Module at Synchrotron Beamline for the Study of Mechanical Properties of Nanostructured Films. Materials Research Society Symposia Proceedings, 2009, 1224, 1.	0.1	0
Relation between residual stresses and microstructure in Mo(Cr) thin films elaborated by ionized magnetron sputtering. Surface and Coatings Technology, 2008, 202, 2247-2251.	4.8	8
Size effects on the Mechanical Behavior of Nanometric W/Cu Multilayers. Materials Research Society Symposia Proceedings, 2008, 1086, 1.	0.1	3
Small scale mechanical properties of polycrystalline materials: in situ diffraction studies. International Journal of Nanotechnology, 2008, 5, 609.	0.2	4
Mechanical Properties of Thin Films and Nanometric Multilayers Using Tensile Testing and Synchrotron X-Ray Diffraction. Plasma Processes and Polymers, 2007, 4, 311-317.	3.0	3
	diffraction. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141489. Study of Residual Stresses in Additively Manufactured Ti-6AI-4V by Neutron Diffraction Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 951-961. Temperature effect on strain-induced phase transformation of cobalt. Materials Letters, 2020, 281, 128812. Electrochemical characteristics of Nixki thin films deposited by DC and HiPIMS reactive magnetron spintering. Thin Solid Films, 2019, 669, 659-664. In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization., 2018, In situ Intitle strains analysis in titanium during a unaxial tensile test. Materials Science & amp; Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 662, 395-403. Modelling of elastoplastic behaviour of metallic materials with a homogenization approach: a self-consistent model based on dislocation densities. Acta Mechanica, 2015, 226, 2715-2727. Residual stress fields analysis in rolled Zircaloy-4 plates: Grazing incidence diffraction and elastoplastic self-consistent model. Acta Materialia, 2014, 71, 136-144. Controlled nanostructuration of polycrystalline tungsten thin films. Journal of Applied Physics, 2013, 113,. Cipper coverage effect on tungsten crystallites texture development in W/Cu nanocomposite thin films. Journal of Applied Physics, 2011, 109, 014305. Strength Effects in Micropillars of a Dispersion Strengthened Superalloy. Advanced Engineering Materials, 2010, 12, 385-388.<	diffraction. Materials Science & amp: Engineering A: Structural Materials. Properties, Microstructure and Processing, 2021, 831, 141489. 5.6 Study of Residual Stresses in Additively Manufactured Ti-6AI-4V by Neutron Diffraction Measurements. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2020, 51, 951, 961. 2.2 Temperature effect on strain-induced phase transformation of cobalt. Materials Letters, 2020, 281, 128812. 2.6 Electrochemical characteristics of Nink thin films deposited by DC and HIPIMS reactive magnetron sputtering. Thin Solid Plins, 2019, 669, 659-664. 1.8 In Situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization., 2018, 5.0 In situ Mechanical Behavior of Regenerating Rat Calvaria Bones Under Tensile Load via Synchrotron Diffraction Characterization., 2018, 5.0 Modelling of elastoplastic behaviour of metallic materials with a homogenization approach: a self-consistent model. Acta Materials, 2014, 71, 136-144. 7.9 Controlled nanostructuration of polycrystalline tungsten thin films. Journal of Applied Physics, 2013, 113, . 2.5 Strength Effects in Micropillars of a Dispersion Strengthened Superalloy. Advanced Engineering Materials, 2010, 12, 385-386. 1.4 Development of a Biaxial Tensile Module at Synchrotron Beamline for the Study of Mechanical Physics, 2013, 113, . 1.4 Controlled nanostructuration of polycrystalline tungsten thin films. Journal of Applied Physics, 2011, 109,

#	Article	IF	CITATIONS
19	X-ray diffraction analysis of the structure and residual stresses of W/Cu multilayers. Surface and Coatings Technology, 2006, 201, 4372-4376.	4.8	28
20	Strains, Stresses and Elastic Properties in Polycrystalline Metallic Thin Films: In Situ Deformation Combined with X-Ray Diffraction and Simulation Experiments. Materials Science Forum, 2006, 524-525, 735-740.	0.3	2
21	Lattice Strain Pole Figures Analysis in Titanium during Uniaxial Deformation. Materials Science Forum, 0, 905, 74-80.	0.3	1