Na Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176867/publications.pdf

Version: 2024-02-01

		331259	395343
55	3,629 citations	21	33
papers	citations	h-index	g-index
55	EE	E E	2406
55	55	55	2496
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Optimal demand response based on utility maximization in power networks. , 2011, , .		658
2	Exact Convex Relaxation of Optimal Power Flow in Radial Networks. IEEE Transactions on Automatic Control, 2015, 60, 72-87.	3.6	369
3	Design and Stability of Load-Side Primary Frequency Control in Power Systems. IEEE Transactions on Automatic Control, 2014, 59, 1177-1189.	3.6	367
4	Harnessing Smoothness to Accelerate Distributed Optimization. IEEE Transactions on Control of Network Systems, $2018, 5, 1245-1260$.	2.4	363
5	Connecting Automatic Generation Control and Economic Dispatch From an Optimization View. IEEE Transactions on Control of Network Systems, 2016, 3, 254-264.	2.4	202
6	Optimal Residential Demand Response in Distribution Networks. IEEE Journal on Selected Areas in Communications, 2014, 32, 1441-1450.	9.7	167
7	Accelerated Distributed Nesterov Gradient Descent. IEEE Transactions on Automatic Control, 2020, 65, 2566-2581.	3.6	107
8	Optimal Scheduling of Battery Charging Station Serving Electric Vehicles Based on Battery Swapping. IEEE Transactions on Smart Grid, 2019, 10, 1372-1384.	6.2	105
9	Reinforcement Learning for Selective Key Applications in Power Systems: Recent Advances and Future Challenges. IEEE Transactions on Smart Grid, 2022, 13, 2935-2958.	6.2	87
10	Optimal Power Flow of Radial Networks and Its Variations: A Sequential Convex Optimization Approach. IEEE Transactions on Smart Grid, 2017, 8, 2974-2987.	6.2	86
11	On the Exponential Stability of Primal-Dual Gradient Dynamics. , 2019, 3, 43-48.		82
12	Real-time decentralized voltage control in distribution networks. , 2014, , .		81
13	Passivity-Based Distributed Optimization With Communication Delays Using PI Consensus Algorithm. IEEE Transactions on Automatic Control, 2018, 63, 4421-4428.	3.6	81
14	Connecting automatic generation control and economic dispatch from an optimization view. , 2014, , .		77
15	Optimal Distributed Feedback Voltage Control Under Limited Reactive Power. IEEE Transactions on Power Systems, 2020, 35, 315-331.	4.6	76
16	Aggregate Power Flexibility in Unbalanced Distribution Systems. IEEE Transactions on Smart Grid, 2020, 11, 258-269.	6.2	71
17	Distributed Optimal Voltage Control With Asynchronous and Delayed Communication. IEEE Transactions on Smart Grid, 2020, 11, 3469-3482.	6.2	43
18	Distributed Zero-Order Algorithms for Nonconvex Multiagent Optimization. IEEE Transactions on Control of Network Systems, 2021, 8, 269-281.	2.4	40

#	Article	IF	CITATIONS
19	On Maintaining Linear Convergence of Distributed Learning and Optimization Under Limited Communication. IEEE Transactions on Signal Processing, 2020, 68, 6101-6116.	3.2	35
20	Convergence of Limited Communication Gradient Methods. IEEE Transactions on Automatic Control, 2018, 63, 1356-1371.	3.6	33
21	Leveraging Two-Stage Adaptive Robust Optimization for Power Flexibility Aggregation. IEEE Transactions on Smart Grid, 2021, 12, 3954-3965.	6.2	33
22	Robust hybrid zero-order optimization algorithms with acceleration via averaging in time. Automatica, 2021, 123, 109361.	3.0	29
23	Non-Asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories. , 2021, 5, 1693-1698.		28
24	Voltage Control Using Limited Communication. IEEE Transactions on Control of Network Systems, 2019, 6, 993-1003.	2.4	27
25	Achieving real-time economic dispatch in power networks via a saddle point design approach. , 2015, , .		26
26	Distributed Control for Reaching Optimal Steady State in Network Systems: An Optimization Approach. IEEE Transactions on Automatic Control, 2018, 63, 864-871.	3.6	25
27	Communication Complexity of Dual Decomposition Methods for Distributed Resource Allocation Optimization. IEEE Journal on Selected Topics in Signal Processing, 2018, 12, 717-732.	7.3	23
28	A Market Mechanism for Virtual Inertia. IEEE Transactions on Smart Grid, 2020, 11, 3570-3579.	6.2	22
29	Distributed optimal steady-state control using reverse- and forward-engineering. , 2015, , .		21
30	Online Residential Demand Response via Contextual Multi-Armed Bandits., 2021, 5, 433-438.		20
31	Federated Learning over Wireless Networks: A Band-limited Coordinated Descent Approach. , 2021, , .		19
32	Accelerated Distributed Nesterov Gradient Descent for smooth and strongly convex functions. , 2016, , .		18
33	Online Optimization With Predictions and Switching Costs: Fast Algorithms and the Fundamental Limit. IEEE Transactions on Automatic Control, 2021, 66, 4761-4768.	3.6	18
34	On the Equivalence of Youla, System-Level, and Input–Output Parameterizations. IEEE Transactions on Automatic Control, 2021, 66, 413-420.	3.6	18
35	An integrated design of optimization and physical dynamics for energy efficient buildings: A passivity approach. , 2017, , .		16
36	Distributed Automatic Load Frequency Control With Optimality in Power Systems. IEEE Transactions on Control of Network Systems, 2021, 8, 307-318.	2.4	16

#	Article	IF	CITATIONS
37	Semi-global exponential stability of augmented primal–dual gradient dynamics for constrained convex optimization. Systems and Control Letters, 2020, 144, 104754.	1.3	15
38	On Maintaining Linear Convergence of Distributed Learning and Optimization under Limited Communication. , 2019, , .		13
39	Distributed Zero-Order Algorithms for Nonconvex Multi-Agent optimization. , 2019, , .		13
40	Learning and Selecting the Right Customers for Reliability: A Multi-Armed Bandit Approach. , 2018, , .		12
41	Online Learning and Distributed Control for Residential Demand Response. IEEE Transactions on Smart Grid, 2021, 12, 4843-4853.	6.2	12
42	Distributed Voltage Control for Three-Phase Unbalanced Distribution Systems With DERs and Practical Constraints. IEEE Transactions on Industry Applications, 2021, 57, 6622-6633.	3.3	12
43	A reliability-aware multi-armed bandit approach to learn and select users in demand response. Automatica, 2020, 119, 109015.	3.0	11
44	Optimal Distributed Energy Resource Coordination: A Decomposition Method Based on Distribution Locational Marginal Costs. IEEE Transactions on Smart Grid, 2022, 13, 1200-1212.	6.2	10
45	Zeroth-order Feedback Optimization for Cooperative Multi-Agent Systems. , 2020, , .		9
46	Mechanism design for reliability in demand response with uncertainty., 2017,,.		7
47	Optimal Voltage Control Using Event Triggered Communication. , 2019, , .		6
48	Communication-Efficient Distributed SGD With Compressed Sensing. , 2022, 6, 2054-2059.		5
49	Scalable Reinforcement Learning for Multiagent Networked Systems. Operations Research, 2022, 70, 3601-3628.	1.2	5
50	Distributed Optimal Voltage Control for Three Phase Unbalanced Distribution Systems with DERs. , 2020, , .		4
51	Control Reconfiguration of Dynamical Systems for Improved Performance via Reverse- and Forward-Engineering. IEEE Transactions on Automatic Control, 2022, 67, 1490-1497.	3.6	2
52	Non-asymptotic Identification of Linear Dynamical Systems Using Multiple Trajectories., 2021,,.		1
53	A Passivity-Based Design of Cyber-Physical Building HVAC Energy Management Integrating Optimization and Physical Dynamics., 2020,, 309-341.		1
54	Control Reconfiguration for Improved Performance via Reverse-engineering and Forward-engineering. IFAC-PapersOnLine, 2020, 53, 4688-4694.	0.5	1

ARTICLE IF CITATIONS

55 Control Reconfiguration of Cyber-physical Systems for Improved Performance via Reverse-engineering and Accelerated First-order Algorithms., 2020,,... 1