List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176833/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TRY – a global database of plant traits. Global Change Biology, 2011, 17, 2905-2935.	4.2	2,002
2	TRY plant trait database – enhanced coverage and open access. Global Change Biology, 2020, 26, 119-188.	4.2	1,038
3	Brazil's neglected biome: The South Brazilian Campos. Perspectives in Plant Ecology, Evolution and Systematics, 2007, 9, 101-116.	1.1	554
4	Worldwide evidence of a unimodal relationship between productivity and plant species richness. Science, 2015, 349, 302-305.	6.0	315
5	BioTIME: A database of biodiversity time series for the Anthropocene. Global Ecology and Biogeography, 2018, 27, 760-786.	2.7	289
6	Unearthing belowground bud banks in fireâ€prone ecosystems. New Phytologist, 2018, 217, 1435-1448.	3.5	257
7	A research agenda for seedâ€ŧrait functional ecology. New Phytologist, 2019, 221, 1764-1775.	3.5	218
8	Resilience and restoration of tropical and subtropical grasslands, savannas, and grassy woodlands. Biological Reviews, 2019, 94, 590-609.	4.7	205
9	Seed germination traits can contribute better to plant community ecology. Journal of Vegetation Science, 2016, 27, 637-645.	1.1	192
10	Comment on $\hat{a} \in \infty$ The global tree restoration potential $\hat{a} \in \mathbf{S}$ Science, 2019, 366, .	6.0	185
11	Does disturbance affect bud bank size and belowground structures diversity in Brazilian subtropical grasslands?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2014, 209, 110-116.	0.6	77
12	The Year 2017: Megafires and Management in the Cerrado. Fire, 2018, 1, 49.	1.2	69
13	The diversity of postâ€fire regeneration strategies in the cerrado ground layer. Journal of Ecology, 2021, 109, 154-166.	1.9	64
14	Does season affect fire behaviour in the Cerrado?. International Journal of Wildland Fire, 2017, 26, 427.	1.0	55
15	Mythâ€busting tropical grassy biome restoration. Restoration Ecology, 2020, 28, 1067-1073.	1.4	50
16	How can an invasive grass affect fire behavior in a tropical savanna? A community and individual plant level approach. Biological Invasions, 2015, 17, 423-431.	1.2	49
17	Shortâ€ŧerm changes caused by fire and mowing in Brazilian <i>Campos</i> grasslands with different longâ€ŧerm fire histories. Journal of Vegetation Science, 2012, 23, 552-562.	1.1	48
18	Impact of invasive grasses on Cerrado under natural regeneration. Biological Invasions, 2018, 20, 3621-3629.	1.2	48

#	Article	IF	CITATIONS
19	Does Fire Trigger Seed Germination in the Neotropical Savannas? Experimental Tests with Six Cerrado Species. Biotropica, 2016, 48, 181-187.	0.8	45
20	A research agenda for the restoration of tropical and subtropical grasslands and savannas. Restoration Ecology, 2021, 29, e13292.	1.4	45
21	Araucaria forest dynamics in relation to fire frequency in southern Brazil based on fossil and modern pollen data. Review of Palaeobotany and Palynology, 2010, 160, 53-65.	0.8	43
22	Fire effects on seed germination: Heat shock and smoke on permeable vs impermeable seed coats. Flora: Morphology, Distribution, Functional Ecology of Plants, 2019, 253, 98-106.	0.6	43
23	Does fire induce flowering in <scp>B</scp> razilian subtropical grasslands?. Applied Vegetation Science, 2014, 17, 690-699.	0.9	42
24	Above―and belowâ€ground biomass and carbon dynamics in <scp>B</scp> razilian <scp>C</scp> errado wet grasslands. Journal of Vegetation Science, 2013, 24, 356-364.	1.1	41
25	A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 2020, 68, 473.	0.3	38
26	Biome Awareness Disparity is BAD for tropical ecosystem conservation and restoration. Journal of Applied Ecology, 2022, 59, 1967-1975.	1.9	38
27	Postâ€fire regeneration strategies in a frequently burned Cerrado community. Journal of Vegetation Science, 2021, 32, .	1.1	37
28	Feedbacks between vegetation and disturbance processes promote long-term persistence of forest–grassland mosaics in south Brazil. Ecological Modelling, 2014, 291, 224-232.	1.2	36
29	A field perspective on effects of fire and temperature fluctuation on Cerrado legume seeds. Seed Science Research, 2017, 27, 74-83.	0.8	36
30	Fire and legume germination in a tropical savanna: ecological and historical factors. Annals of Botany, 2019, 123, 1219-1229.	1.4	33
31	Population biology and regeneration of forbs and shrubs after fire in Brazilian Campos grasslands. Plant Ecology, 2010, 211, 107-117.	0.7	32
32	Fireâ€triggered flowering is the dominant postâ€fire strategy in a tropical savanna. Journal of Vegetation Science, 2021, 32, e12995.	1.1	28
33	Management Policies for Invasive Alien Species: Addressing the Impacts Rather than the Species. BioScience, 2021, 71, 174-185.	2.2	27
34	And after fire, the Cerrado flowers: A review of post-fire flowering in a tropical savanna. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 280, 151849.	0.6	27
35	Estrutura de um cerrado strico sensu na Gleba Cerrado Pé-de-Gigante, Santa Rita do Passa Quatro, SP. Acta Botanica Brasilica, 2003, 17, 531-539.	0.8	26
36	Effects of disturbance on population biology of the rosette species Eryngium horridum Malme in grasslands in southern Brazil. Plant Ecology, 2008, 195, 55-67.	0.7	26

#	Article	IF	CITATIONS
37	To resist or to germinate? The effect of fire on legume seeds in Brazilian subtropical grasslands. Acta Botanica Brasilica, 2016, 30, 147-151.	0.8	26
38	How do the wets burn? Fire behavior and intensity in wet grasslands in the Brazilian savanna. Revista Brasileira De Botanica, 2017, 40, 167-175.	0.5	26
39	ls fire always the "bad guy�. Flora: Morphology, Distribution, Functional Ecology of Plants, 2020, 268, 151611.	0.6	26
40	Disturbance as a factor in breaking dormancy and enhancing invasiveness of African grasses in a Neotropical Savanna. Acta Botanica Brasilica, 2016, 30, 131-137.	0.8	25
41	Gaps critical for the survival of exposed seeds during Cerrado fires. Australian Journal of Botany, 2018, 66, 116.	0.3	24
42	From ashes to flowers: a savanna sedge initiates flowers 24Âh after fire. Ecology, 2019, 100, e02648.	1.5	24
43	Global endemics-area relationships of vascular plants. Perspectives in Ecology and Conservation, 2019, 17, 41-49.	1.0	22
44	Placing Brazil's grasslands and savannas on the map of science and conservation. Perspectives in Plant Ecology, Evolution and Systematics, 2022, 56, 125687.	1.1	22
45	The presence of invasive grasses affects the soil seed bank composition and dynamics of both invaded and non-invaded areas of open savannas. Journal of Environmental Management, 2020, 276, 111291.	3.8	18
46	How does fire affect germination of grasses in the Cerrado?. Seed Science Research, 2020, 30, 275-283.	0.8	18
47	Fire frequency affects fire behavior in open savannas of the Cerrado. Forest Ecology and Management, 2021, 482, 118850.	1.4	18
48	Abundance of invasive grasses is dependent on fire regime and climatic conditions in tropical savannas. Journal of Environmental Management, 2020, 271, 111016.	3.8	17
49	Efeitos de altas temperaturas na germinação de sementes de capim-dourado (Syngonanthus nitens) Tj ETQq1	1 0.7843	14 rgBT /Ove
50	The effect of simulated heat-shock and daily temperature fluctuations on seed germination of four species from fire-prone ecosystems. Acta Botanica Brasilica, 2016, 30, 514-519.	0.8	16
51	Not a melting pot: Plant species aggregate in their nonâ€native range. Global Ecology and Biogeography, 2020, 29, 482-490.	2.7	16
52	Variation in biomass allocation and root functional parameters in response to fire history in Brazilian savannas. Journal of Ecology, 2021, 109, 4143-4157.	1.9	14
53	The ecological value of <i>Eryngium horridum</i> in maintaining biodiversity in subtropical grasslands. Austral Ecology, 2009, 34, 558-566.	0.7	12
54	Fire promotes functional plant diversity and modifies soil carbon dynamics in tropical savanna. Science of the Total Environment, 2022, 812, 152317.	3.9	12

#	Article	IF	CITATIONS
55	Fire cues and germination of invasive and native grasses in the Cerrado. Acta Botanica Brasilica, 2020, 34, 185-191.	0.8	11
56	New endemic species of Manihot (Euphorbiaceae) from Serra do Tombador in Goiás, Central Brazil. Phytotaxa, 2016, 273, 147.	0.1	10
57	Do we need intervention after pine tree removal? The use of different management techniques to enhance Cerrado natural regeneration. Perspectives in Ecology and Conservation, 2019, 17, 146-150.	1.0	10
58	Longâ€ŧerm <i>Pinus</i> plantations reduce the bud bank in Cerrado areas. Applied Vegetation Science, 2021, 24, .	0.9	10
59	CONTAIN: Optimising the long-term management of invasive alien species using adaptive management. NeoBiota, 0, 59, 119-138.	1.0	10
60	Your best buds are worth protecting: Variation in bud protection in a fireâ€prone cerrado system. Functional Ecology, 2021, 35, 2424-2434.	1.7	9
61	Correlates of geoxyle diversity in Afrotropical grasslands. Journal of Biogeography, 2022, 49, 339-352.	1.4	9
62	Identifying Priorities, Targets, and Actions for the Long-term Social and Ecological Management of Invasive Non-Native Species. Environmental Management, 2022, 69, 140-153.	1.2	8
63	Fire and herbivory shape belowground bud banks in a semi-arid African savanna. African Journal of Range and Forage Science, 2022, 39, 16-26.	0.6	8
64	Fire exclusion changes belowground bud bank and bud-bearing organ composition jeopardizing open savanna resilience. Oecologia, 2022, 199, 153-164.	0.9	8
65	What matters for vegetation regeneration in Brazilian subtropical grasslands: seeders or resprouters?. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 279, 151817.	0.6	7
66	Flammability in tropical savannas: Variation among growth forms and seasons in Cerrado. Biotropica, 2022, 54, 979-987.	0.8	7
67	Introducing bud bank and below-ground plant organ research to South Africa: Report on a workshop and the way forward. South African Journal of Science, 2019, 115, .	0.3	6
68	Response to Comment on "Worldwide evidence of a unimodal relationship between productivity and plant species richness― Science, 2016, 351, 457-457.	6.0	5
69	Seed germination niche across habitats: an introduction to this special issue. Folia Geobotanica, 2019, 54, 1-4.	0.4	5
70	Seed tolerance to post-fire temperature fluctuation of Cerrado legume shrubs with micromorphological implications. Flora: Morphology, Distribution, Functional Ecology of Plants, 2021, 275, 151761.	0.6	5
71	Heat and smoke affect the germination of flammable resprouters: Vellozia species in the Cerrado. Folia Geobotanica, 2019, 54, 65-72.	0.4	4
72	Germination and seedling morphology of four South American <i>Smilax</i> (Smilacaceae) Revista De Biologia Tropical, 2012, 60, 495-504.	0.1	4

#	Article	IF	CITATIONS
73	Corrigendum to: A handbook for the standardised sampling of plant functional traits in disturbance-prone ecosystems, with a focus on open ecosystems. Australian Journal of Botany, 2021, 69, 110.	0.3	1
74	Native ants help to spread an invasive African grass in the Cerrado. Biotropica, 0, , .	0.8	1
75	Fire stimulates grass flowering in the Cerrado independent of season. Journal of Vegetation Science, 2022, 33, .	1.1	0