
Hans-Peter Kaul

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176813/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Management of crop water under drought: a review. Agronomy for Sustainable Development, 2015, 35, 401-442.	2.2	368
2	Coarse and fine root plants affect pore size distributions differently. Plant and Soil, 2014, 380, 133-151.	1.8	200
3	Cover crop evapotranspiration under semi-arid conditions using FAO dual crop coefficient method with water stress compensation. Agricultural Water Management, 2007, 93, 85-98.	2.4	103
4	Yield and nitrogen utilization efficiency of the pseudocereals amaranth, quinoa, and buckwheat under differing nitrogen fertilization. European Journal of Agronomy, 2005, 22, 95-100.	1.9	100
5	Root induced changes of effective 1D hydraulic properties in a soil column. Plant and Soil, 2014, 381, 193-213.	1.8	95
6	Estimation of runoff mitigation by morphologically different cover crop root systems. Journal of Hydrology, 2016, 538, 667-676.	2.3	86
7	Environmental and management influences on temporal variability of near saturated soil hydraulic properties. Geoderma, 2013, 204-205, 120-129.	2.3	76
8	Nitrogen uptake, use and utilization efficiency by oat–pea intercrops. Field Crops Research, 2015, 179, 113-119.	2.3	70
9	Developing phosphorus-efficient crop varieties—An interdisciplinary research framework. Field Crops Research, 2014, 162, 87-98.	2.3	68
10	Field quantification of wetting–drying cycles to predict temporal changes of soil pore size distribution. Soil and Tillage Research, 2013, 133, 1-9.	2.6	65
11	Natural and management-induced dynamics of hydraulic conductivity along a cover-cropped field slope. Geoderma, 2008, 146, 317-325.	2.3	57
12	Sowing ratio and N fertilization affect yield and yield components of oat and pea in intercrops. Field Crops Research, 2014, 155, 159-163.	2.3	57
13	A statistical approach to root system classification. Frontiers in Plant Science, 2013, 4, 292.	1.7	55
14	Rhizobium Impacts on Seed Productivity, Quality, and Protection of Pisum sativum upon Disease Stress Caused by Didymella pinodes: Phenotypic, Proteomic, and Metabolomic Traits. Frontiers in Plant Science, 2017, 8, 1961.	1.7	55
15	Wheat root diversity and root functional characterization. Plant and Soil, 2014, 380, 211-229.	1.8	53
16	Plastid expression of a doubleâ€pentameric vaccine candidate containing human papillomavirusâ€16 L1 antigen fused with LTB as adjuvant: transplastomic plants show pleiotropic phenotypes. Plant Biotechnology Journal, 2011, 9, 651-660.	4.1	49
17	Transplastomic expression of a modified human papillomavirus L1 protein leading to the assembly of capsomeres in tobacco: a step towards cost-effective second-generation vaccines. Transgenic Research, 2011, 20, 271-282.	1.3	49
18	Improved evaluation of cover crop species by growth and root factors. Agronomy for Sustainable Development, 2010, 30, 455-464.	2.2	46

#	Article	IF	CITATIONS
19	Microbial symbionts affect Pisum sativum proteome and metabolome under Didymella pinodes infection. Journal of Proteomics, 2016, 143, 173-187.	1.2	42
20	Improving the energy balance of bioethanol production from winter cereals: the effect of crop production intensity. Applied Energy, 2001, 68, 51-67.	5.1	41
21	Costs of bioethanol production from winter cereals: the effect of growing conditions and crop production intensity levels. Industrial Crops and Products, 2002, 15, 91-102.	2.5	35
22	Dissection of drought response of modern and underutilized wheat varieties according to Passioura's yield-water framework. Frontiers in Plant Science, 2015, 6, 570.	1.7	33
23	Competition and yield in intercrops of maize and sunflower for biogas. Industrial Crops and Products, 2011, 34, 1203-1211.	2.5	31
24	Key metabolic traits of Pisum sativum maintain cell vitality during Didymella pinodes infection: cultivar resistance and the microsymbionts' influence. Journal of Proteomics, 2017, 169, 189-201.	1.2	31
25	Productivity and nutrient use efficiency with integrated fertilization of buckwheat–fenugreek intercrops. Nutrient Cycling in Agroecosystems, 2018, 110, 407-425.	1.1	29
26	Optimum crop densities for potential yield and harvestable yield of grain amaranth are conflicting. European Journal of Agronomy, 2008, 28, 119-125.	1.9	28
27	Energy efficiency of winter wheat in a long-term tillage experiment under Pannonian climate conditions. European Journal of Agronomy, 2019, 103, 24-31.	1.9	27
28	Grain Yields of Perennial Grain Crops in Pure and Mixed Stands. Journal of Agronomy and Crop Science, 2002, 188, 342-349.	1.7	26
29	Dry matter and nitrogen accumulation and residues of oil and protein crops. European Journal of Agronomy, 1996, 5, 137-147.	1.9	18
30	Germination of grain amaranth (Amaranthus hypochondriacus × A. hybridus): effects of seed quality, temperature, light, and pesticides. European Journal of Agronomy, 1998, 8, 127-135.	1.9	18
31	Winter wheat yields in a long-term tillage experiment under Pannonian climate conditions. Plant, Soil and Environment, 2015, 61, 145-150.	1.0	18
32	Agronomic potential of winter grain legumes for Central Europe: Development, soil coverage and yields. Field Crops Research, 2019, 241, 107576.	2.3	18
33	A Proteomic Workflow Using High-Throughput De Novo Sequencing Towards Complementation of Genome Information for Improved Comparative Crop Science. Methods in Molecular Biology, 2016, 1394, 233-243.	0.4	18
34	Reprint of "Developing phosphorus-efficient crop varieties—An interdisciplinary research framework― Field Crops Research, 2014, 165, 49-60.	2.3	17
35	Concentrations and uptake of macronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Archives of Agronomy and Soil Science, 2016, 62, 1236-1249.	1.3	16
36	Effects of sowing depth and soil conditions on seedling emergence of amaranth and quinoa. European Journal of Agronomy, 1994, 3, 205-210.	1.9	15

#	Article	IF	CITATIONS
37	Nitrogen efficiency components of winter cereals. European Journal of Agronomy, 1996, 5, 115-124.	1.9	15
38	Nitrogen yield and nitrogen fixation of winter faba beans. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 658-666.	0.3	15
39	Assessing the impact of climate change on crop management in winter wheat – a case study for Eastern Austria. Journal of Agricultural Science, 2016, 154, 1153-1170.	0.6	15
40	Efficiency of Mineral Nitrogen Fertilization in Winter Wheat under Pannonian Climate Conditions. Agriculture (Switzerland), 2020, 10, 541.	1.4	15
41	Double-cropping systems based on rye, maize and sorghum: Impact of variety and harvesting time on biomass and biogas yield. European Journal of Agronomy, 2019, 110, 125934.	1.9	14
42	Effect of Organic Fertilizers on Antioxidant Activity and Bioactive Compounds of Fenugreek Seeds in Intercropped Systems with Buckwheat. Agronomy, 2019, 9, 367.	1.3	13
43	Nitrogen Concentrations and Nitrogen Yields of Above-Ground Dry Matter of Chickpea during Crop Growth Compared to Pea, Barley and Oat in Central Europ. Turkish Journal of Field Crops, 2014, 19, 136.	0.2	12
44	Potassium fixation in northern Iranian paddy soils. Geoderma, 2020, 375, 114475.	2.3	11
45	Nitrogen Yields and Biological Nitrogen Fixation of Winter Grain Legumes. Agronomy, 2021, 11, 681.	1.3	10
46	GENETIC DIVERSITY FOR SOME NUTRITIVE TRAITS OF CHICKPEA (Cicer arietinum L.) FROM DIFFERENT REGIONS IN KOSOVA. Turkish Journal of Field Crops, 2016, 21, 154.	0.2	10
47	Basic soil chemical properties after 15 years in a long-term tillage and crop rotation experiment. International Agrophysics, 2020, 1, 133-140.	0.7	10
48	Selection Criteria for Short-fibre Flax. Plant Breeding, 1994, 113, 130-136.	1.0	9
49	Grain yield formation and nitrogen uptake of amaranth. European Journal of Agronomy, 1995, 4, 379-386.	1.9	9
50	Strahlungsnutzung durch Bestande olreicher Kornerfruchtarten - Winterraps, Ollein und Sonnenblume im Vergleich. Journal of Agronomy and Crop Science, 2000, 184, 277-286.	1.7	9
51	Development, growth, and nitrogen use of autumn- and spring-sown facultative wheat. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 6-13.	0.3	9
52	Seed Metabolism and Pathogen Resistance Enhancement in Pisum sativum During Colonization of Arbuscular Mycorrhizal Fungi: An Integrative Metabolomics-Proteomics Approach. Frontiers in Plant Science, 2020, 11, 872.	1.7	9
53	Effect of tillage systems on energy input and energy efficiency for sugar beet and soybean under Pannonian climate conditions. Plant, Soil and Environment, 2021, 67, 137-146.	1.0	9

54 Selenium supply affects chlorophyll concentration and biomass production of maize (<i>Zea mays</i>) Tj ETQq0 0 8 rgBT /Overlock 10

#	Article	IF	CITATIONS
55	Effect of row spacing, seeding rate and nitrogen fertilization on yield and yield components of soybean. Bodenkultur, 2019, 70, 221-236.	0.1	9
56	Sustainability Estimation of Oat:Pea Intercrops from the Agricultural Life Cycle Assessment Perspective. Agronomy, 2021, 11, 2433.	1.3	8
57	Untersuchungen zur Anpassung des Stickstoff-Angebots aus unterschiedlichen N-Quellen an den Verlauf der N-Aufnahme von MaisbestÄ ¤ den. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1996, 159, 471-478.	0.4	7
58	Broiler litter and inorganic fertilizer effects on seed yield and productivity of buckwheat and fenugreek in row intercropping. Archives of Agronomy and Soil Science, 2017, 63, 1121-1136.	1.3	7
59	Antioxidant capacity and polyphenols in buckwheat seeds from fenugreek/buckwheat intercrops as influenced by fertilization. Journal of Cereal Science, 2018, 84, 142-150.	1.8	7
60	Energy Efficiency of Continuous Rye, Rotational Rye and Barley in Different Fertilization Systems in a Long-Term Field Experiment. Agronomy, 2021, 11, 229.	1.3	7
61	Optimierung der Produktion von Wintergetreide zur Bioethanolherstellung durch unterschiedlich intensive Anbauverfahren. Journal of Agronomy and Crop Science, 2000, 185, 55-65.	1.7	6
62	Limited winter survival and compensation mechanisms of yield components constrain winter faba bean production in Central Europe. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2015, 65, 496-505.	0.3	6
63	Phylloxeration effects on the sink activity and assimilation rate in phylloxera (<i>Daktulosphaira) Tj ETQq1 1 0.78</i>	4314 rgBT 0.1	- /Qverlock 1
64	Common Ragweed (Ambrosia artemisiifolia L.) Causes Severe Yield Losses in Soybean and Impairs Bradyrhizobium japonicum Infection. Agronomy, 2021, 11, 1616.	1.3	6
65	Do cover crops enhance soil greenhouse gas losses during high emission moments under temperate Central Europe conditions?. Bodenkultur, 2018, 68, 171-187.	0.1	6
66	Effects of water supply on root traits and biological yield of Durum (<i>Triticum durum</i> Desf.) and Khorasan (<i>Triticum turanicum</i> Jakubz) wheat. Plant Biosystems, 2014, 148, 1009-1015.	0.8	5
67	Concentrations and uptake of micronutrients by oat and pea in intercrops in response to N fertilization and sowing ratio. Bodenkultur, 2016, 67, 1-15.	0.1	5
68	A low nitrogen fertiliser rate in oat–pea intercrops does not impair N ₂ fixation. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 182-190.	0.3	5
69	Growth analysis and land equivalent ratio of fenugreek-buckwheat intercrops at different fertilizer types. Bodenkultur, 2018, 69, 105-119.	0.1	5
70	Yield structure components of autumn- and spring-sown pea (<i>Pisum sativum</i> L.). Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2020, 70, 109-116.	0.3	4
71	Comparison of energy inputs and energy efficiency for maize in a long-term tillage experiment under Pannonian climate conditions. Plant, Soil and Environment, 2021, 67, 299-306.	1.0	4
72	Effect of seed size on soil cover, yield, yield components and nitrogen uptake of two-row malting barley. Bodenkultur, 2019, 70, 89-98.	0.1	4

#	Article	IF	CITATIONS
73	Exchangeable and Plant-Available Macronutrients in a Long-Term Tillage and Crop Rotation Experiment after 15 Years. Plants, 2022, 11, 565.	1.6	3
74	Productivity of wheat (Triticum aestivum L.) intercropped with rapeseed (Brassica napus L.). Canadian Journal of Plant Science, 2016, , .	0.3	2
75	Didymella pinodes Affects N and P Uptakes and Their Efficiencies in a Tripartite Mutualism of Pea. Agronomy, 2019, 9, 52.	1.3	1
76	On the Importance of Soybean Seed P for Shoot P Uptake before Anthesis. Agronomy, 2021, 11, 1233.	1.3	1
77	Autumn sowing of facultative triticale results in higher biomass production and nitrogen uptake compared to spring sowing. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2021, 71, 806-814.	0.3	1
78	Effect of two seeding rates on yield and yield components of winter and spring faba bean. Acta Agriculturae Scandinavica - Section B Soil and Plant Science, 2022, 72, 496-505.	0.3	1
79	Effects of plant strengthening agents on horticultural crops. Acta Horticulturae, 2016, , 11-18.	0.1	0
80	Laboratory Setup for Sensing Root-Induced Changes of Soil Hydraulic Properties in Soil Columns. International Journal of Plant & Soil Science, 2015, 8, 1-20.	0.2	0