Baolin Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176533/publications.pdf Version: 2024-02-01

ΒΛΟΙΙΝ ΖΗΠ

#	Article	IF	CITATIONS
1	Hierarchically Porous ZnO Architectures for Gas Sensor Application. Crystal Growth and Design, 2009, 9, 3532-3537.	3.0	321
2	Synthesis, Characterization of Fe-doped TiO2 Nanotubes with High Photocatalytic Activity. Catalysis Letters, 2009, 129, 513-518.	2.6	138
3	CuO nanoparticle decorated ZnO nanorod sensor for low-temperature H2S detection. Materials Science and Engineering C, 2012, 32, 2079-2085.	7.3	127
4	Synthesis, characterization of Cr-doped TiO2 nanotubes with high photocatalytic activity. Journal of Nanoparticle Research, 2008, 10, 871-875.	1.9	97
5	High-Performance, Scalable, and Low-Cost Copper Hydroxyapatite for Photothermal CO2 Reduction. ACS Catalysis, 2020, 10, 13668-13681.	11.2	55
6	Synthesis, characterization of B-doped TiO2 nanotubes with high photocatalytic activity. Journal of Sol-Gel Science and Technology, 2010, 53, 535-541.	2.4	48
7	Synthesis and Characterization of Thermally Stable Nanotubular TiO ₂ and Its Photocatalytic Activity. Journal of Physical Chemistry C, 2008, 112, 18772-18775.	3.1	46
8	High efficiency and stability of Au–Cu/hydroxyapatite catalyst for the oxidation of carbon monoxide. RSC Advances, 2017, 7, 45420-45431.	3.6	36
9	CO oxidation over Cu ₂ O deposited on 2D continuous lamellar g-C ₃ N ₄ . New Journal of Chemistry, 2015, 39, 6642-6648.	2.8	34
10	Synthesis, Characterization, and Photocatalytic Activity of Nâ€Đoped TiO2Nanotubes. Journal of Dispersion Science and Technology, 2008, 29, 245-249.	2.4	32
11	g-C ₃ N ₄ supported metal (Pd, Ag, Pt) catalysts for hydrogen-production from formic acid. New Journal of Chemistry, 2018, 42, 9449-9454.	2.8	28
12	Iron-coated TiO2nanotubes and their photocatalytic performance. Journal of Materials Chemistry, 2010, 20, 603-610.	6.7	26
13	Comparative Study on Catalytic Performances for Low-temperature CO Oxidation of Cu–Ce–O and Cu–Co–Ce–O Catalysts. Catalysis Letters, 2008, 124, 405-412.	2.6	25
14	Synthesis and catalytic performance of gold-loaded TiO2 nanofibers. Catalysis Letters, 2007, 118, 55-58.	2.6	23
15	Synthesis and characterization of TiO ₂ nanotube supported Rh-nanoparticle catalysts for regioselective hydroformylation of vinyl acetate. RSC Advances, 2014, 4, 62215-62222.	3.6	20
16	Au/BiPO ₄ nanorod catalysts: synthesis, characterization and their catalytic performance for CO oxidation. RSC Advances, 2016, 6, 15304-15312.	3.6	20
17	Improved Catalytic Performance of Au/α-Fe2O3-Like-Worm Catalyst for Low Temperature CO Oxidation. Nanomaterials, 2019, 9, 1118.	4.1	20
18	Highly uniform Rh nanoparticles supported on boron doped g-C ₃ N ₄ as a highly efficient and recyclable catalyst for heterogeneous hydroformylation of alkenes. New Journal of Chemistry, 2020, 44, 20-23.	2.8	19

BAOLIN ZHU

#	Article	IF	CITATIONS
19	TiO2–Hydroxyapatite Composite as a New Support of Highly Active and Sintering-Resistant Gold Nanocatalysts for Catalytic Oxidation of CO and Photocatalytic Degradation of Methylene Blue. Catalysis Letters, 2018, 148, 359-373.	2.6	18
20	Boron modified TiO ₂ nanotubes supported Rh-nanoparticle catalysts for highly efficient hydroformylation of styrene. New Journal of Chemistry, 2017, 41, 6120-6126.	2.8	16
21	Platinum and Iridium Oxide Co-modified TiO2 Nanotubes Array Based Photoelectrochemical Sensors for Glutathione. Nanomaterials, 2020, 10, 522.	4.1	16
22	Gold Nanoparticles Supported on Urchin-Like CuO: Synthesis, Characterization, and Their Catalytic Performance for CO Oxidation. Nanomaterials, 2020, 10, 67.	4.1	13
23	3D Hydrogen Titanate Nanotubes on Ti Foil: A Carrier for Enzymatic Glucose Biosensor. Sensors, 2020, 20, 1024.	3.8	13
24	Rh Particles Supported on Sulfated g-C3N4: A Highly Efficient and Recyclable Heterogeneous Catalyst for Alkene Hydroformylation. Catalysts, 2020, 10, 1359.	3.5	11
25	Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts. Chemical Research in Chinese Universities, 2015, 31, 851-857.	2.6	9
26	Characterization and photocatalytic properties of Ru, C co-modified one-dimensional TiO2-based composites prepared via a single precursor approach. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	8
27	Synthesis of metal-doped tio2 nanotubes and their catalytic performance for low-temperature co oxidation. Reaction Kinetics and Catalysis Letters, 2006, 88, 301-308.	0.6	7
28	Characterization of Pt catalysts supported by three forms of TiO2 and their catalytic activities for hydrogenation. Reaction Kinetics, Mechanisms and Catalysis, 2013, 108, 117-126.	1.7	7
29	Titanate Nanotube-Supported Au–Rh Bimetallic Catalysts: Characterization and Their Catalytic Performances in Hydroformylation of Vinyl Acetate. Catalysts, 2018, 8, 420.	3.5	7
30	Au/M-TiO2 nanotube catalysts (M=Ce, Ga, Co, Y): preparation, characterization and their catalytic activity for CO oxidation. Journal of Sol-Gel Science and Technology, 2018, 86, 699-710.	2.4	7
31	One-pot synthesis of 3D Cu ₂ S–MoS ₂ nanocomposites by an ionic liquid-assisted strategy with high photocatalytic activity. New Journal of Chemistry, 2019, 43, 269-276.	2.8	7
32	Alkali and Alkaline Earth Cation-Decorated TiO2 Nanotube-Supported Rh Catalysts for Vinyl Acetate Hydroformylation. Catalysts, 2019, 9, 194.	3.5	7
33	Synthesis and CO Oxidation Activity of 1D Mixed Binary Oxide CeO2-LaO x Supported Gold Catalysts. Nanoscale Research Letters, 2017, 12, 579.	5.7	6
34	Tin Dioxide Supported Nanometric Gold: Synthesis, Characterization, and Lowtemperature Catalytic Oxidation of CO. Catalysis Letters, 2006, 108, 97-102.	2.6	5
35	Preparation, characterization and photocatalytic performances of materials based on CS2-modified titanate nanotubes. Materials Science-Poland, 2013, 31, 531-542.	1.0	5
36	Synthesis and Characterization of Rh/B–TNTs as a Recyclable Catalyst for Hydroformylation of Olefin Containing –CN Functional Group. Nanomaterials, 2018, 8, 755.	4.1	5

Baolin Zhu

#	Article	IF	CITATIONS
37	Constructing Co3O4/g-C3N4 Ultra-Thin Nanosheets with Z-Scheme Charge Transfer Pathway for Efficient Photocatalytic Water Splitting. Nanomaterials, 2021, 11, 3341.	4.1	5
38	Influences of the H2PtCl6Solution's pH on the Photocatalytic Activities of Platinum-Loaded TiO2Nanotubes. Journal of Dispersion Science and Technology, 2008, 29, 1408-1411.	2.4	4
39	A comparative study of CO catalytic oxidation on Au/YPO4-prisms and Au/YPO4-rods. Journal of Nanoparticle Research, 2017, 19, 1.	1.9	4
40	Preparation and Characterization of Rh/MgSNTs Catalyst for Hydroformylation of Vinyl Acetate: The RhO was Obtained by Calcination. Catalysts, 2019, 9, 215.	3.5	4
41	Shape-Controlled Syntheses and Redox Activity Differences of Cu ₂ O Particles as an Undergraduate Laboratory Experiment. Journal of Chemical Education, 2022, 99, 1788-1793.	2.3	4
42	Preparation of TiO2/ZnS core/sheath heterostructure nanotubes via a wet chemical method and their photocatalytic activity. Reaction Kinetics and Catalysis Letters, 2007, 92, 239-246.	0.6	3
43	Preparation and characterization of mesoporous TiO2-sphere-supported Au-nanoparticle catalysts with high activity for CO oxidation at ambient temperature. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	3
44	Effect of Ni Addition on the Low Temperature Carbon Monoxide Oxidation over Au/HAP Nanocatalyst. Catalysis Surveys From Asia, 2018, 22, 208-221.	2.6	3
45	Performance of Pt–MoS2 co-modified 3-dimensional TiO2 nanoflowers in photocatalytic water splitting reaction. Journal of Sol-Gel Science and Technology, 2021, 98, 517-527.	2.4	3
46	Promoting Effects of Iron on CO Oxidation over Au/TiO2 Supported Au Nanoparticles. Chemical Research in Chinese Universities, 2018, 34, 965-970.	2.6	2
47	Flower-Like Au–CuO/Bi2WO6 Microsphere Catalysts: Synthesis, Characterization, and Their Catalytic Performances for CO Oxidation. Catalysts, 2017, 7, 266.	3.5	1
48	Fabrication and photocatalytic performance of C, Ptâ€comodified TiO 2 nanotubes. Micro and Nano Letters, 2020, 15, 1089-1094.	1.3	0