
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176477/publications.pdf Version: 2024-02-01

KUN CHENC

#	Article	IF	CITATIONS
1	Computational Design of Miniproteins as SARS-CoV-2 Therapeutic Inhibitors. International Journal of Molecular Sciences, 2022, 23, 838.	4.1	15
2	Discovery of Anti-PD-L1 Human Domain Antibodies for Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, 838966.	4.8	3
3	Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Theranostics, 2021, 11, 2182-2200.	10.0	17
4	LMO7 as an Unrecognized Factor Promoting Pancreatic Cancer Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2021, 9, 647387.	3.7	8
5	Discovery of Small Antiâ€ACE2 Peptides to Inhibit SARSâ€CoVâ€2 Infectivity. Advanced Therapeutics, 2021, 4, 2100087.	3.2	16
6	The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends in Pharmacological Sciences, 2021, 42, 448-460.	8.7	76
7	Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Advanced Drug Delivery Reviews, 2021, 174, 127-139.	13.7	16
8	The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Letters, 2021, 510, 67-78.	7.2	60
9	Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Science Advances, 2020, 6, eabb0616.	10.3	48
10	Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response. , 2020, 8, e001038.		51
11	Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomaterialia, 2020, 113, 501-511.	8.3	88
12	Targeted Delivery of an siRNA/PNA Hybrid Nanocomplex Reverses Carbon Tetrachlorideâ€Induced Liver Fibrosis. Advanced Therapeutics, 2019, 2, 1900046.	3.2	19
13	Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. , 2019, 7, 270.		74
14	siRNA- and miRNA-based therapeutics for liver fibrosis. Translational Research, 2019, 214, 17-29.	5.0	65
15	Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics, 2019, 9, 4508-4524.	10.0	37
16	Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 695-702.	2.5	58
17	Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Interfaces, 2019, 11, 45390-45403.	8.0	33
18	Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 51-61.	3.3	41

#	Article	IF	CITATIONS
19	Noncovalent Attachment of Chemical Moieties to siRNAs Using Peptide Nucleic Acid as a Complementary Linker. ACS Applied Bio Materials, 2018, 1, 643-651.	4.6	5
20	Silencing of α-complex protein-2 reverses alcohol- and cytokine-induced fibrogenesis in hepatic stellate cells. Liver Research, 2017, 1, 70-79.	1.4	14
21	Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Molecular Pharmaceutics, 2017, 14, 1517-1527.	4.6	61
22	Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 2017, 266, 17-26.	9.9	376
23	The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245, 27-40.	9.9	193
24	Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX. Theranostics, 2017, 7, 2982-2995.	10.0	32
25	Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer) Tj ETQq1	1 0.7843 3.8	14 rgBT /0\ 11
26	Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits. Molecules, 2016, 21, 302.	3.8	33
27	Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1323-1334.	3.3	49
28	Discovery of PSMA-specific peptide ligands for targeted drug delivery. International Journal of Pharmaceutics, 2016, 513, 138-147.	5.2	39
29	An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2373-2381.	3.3	25
30	Discovery of Peptide Ligands for Hepatic Stellate Cells Using Phage Display. Molecular Pharmaceutics, 2015, 12, 2180-2188.	4.6	33
31	Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine, 2015, 10, 573-587.	3.3	34
32	A Novel Rapamycin-Polymer Conjugate Based on a New Poly(Ethylene Glycol) Multiblock Copolymer. Pharmaceutical Research, 2014, 31, 706-719.	3.5	22
33	Peptides Used in the Delivery of Small Noncoding RNA. Molecular Pharmaceutics, 2014, 11, 3395-3408.	4.6	71
34	Prostate cancer relevant antigens and enzymes for targeted drug delivery. Journal of Controlled Release, 2014, 187, 118-132.	9.9	86
35	Development of cholesteryl peptide micelles for siRNA delivery. Journal of Controlled Release, 2013, 172, 159-168.	9.9	39
36	Development of Streptavidin-Based Nanocomplex for siRNA Delivery. Molecular Pharmaceutics, 2013, 10, 4534-4545.	4.6	22

#	Article	IF	CITATIONS
37	Expression Profile and Functional Activity of Peptide Transporters in Prostate Cancer Cells. Molecular Pharmaceutics, 2013, 10, 477-487.	4.6	53
38	Development of a Peptide–Drug Conjugate for Prostate Cancer Therapy. Molecular Pharmaceutics, 2011, 8, 901-912.	4.6	83
39	Prodrugs for improving tumor targetability and efficiency. Advanced Drug Delivery Reviews, 2011, 63, 659-670.	13.7	283
40	Blocking IKKα Expression Inhibits Prostate Cancer Invasiveness. Pharmaceutical Research, 2011, 28, 1357-1369.	3.5	28
41	Identification of a LNCaP-Specific Binding Peptide Using Phage Display. Pharmaceutical Research, 2011, 28, 2422-2434.	3.5	24
42	PCBP2 siRNA Reverses the Alcohol-induced Pro-fibrogenic Effects in Hepatic Stellate Cells. Pharmaceutical Research, 2011, 28, 3058-3068.	3.5	17
43	Biological and Therapeutic Applications of Small RNAs. Pharmaceutical Research, 2011, 28, 2961-2965.	3.5	9
44	The role of HER2 in cancer therapy and targeted drug delivery. Journal of Controlled Release, 2010, 146, 264-275.	9.9	442
45	Silencing of the IKKε gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Research, 2010, 12, R74.	5.0	55
46	Inhibition of Breast Cancer Cell Growth and Invasiveness by Dual Silencing of HER-2 and VEGF. Molecular Pharmaceutics, 2010, 7, 543-556.	4.6	42
47	siRNA Delivery and Targeting. Molecular Pharmaceutics, 2009, 6, 649-650.	4.6	11
48	TGF-β1 Gene Silencing for Treating Liver Fibrosis. Molecular Pharmaceutics, 2009, 6, 772-779.	4.6	92
49	RNA Interference for Cancer Therapy. , 2009, , 399-440.		4
50	Site-Specific Delivery of Oligonucleotides to Hepatocytes after Systemic Administration. Bioconjugate Chemistry, 2008, 19, 290-298.	3.6	39
51	Coexpression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist for Improved Human Islet Survival and Function. Molecular Pharmaceutics, 2007, 4, 199-207.	4.6	17
52	Gene Modulation for Treating Liver Fibrosis. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 93-146.	2.2	41
53	Receptor-Mediated Hepatic Uptake of M6Pâ^'BSA-Conjugated Triplex-Forming Oligonucleotides in Rats. Bioconjugate Chemistry, 2006, 17, 823-830.	3.6	23
54	Enhanced Hepatic Uptake and Bioactivity of Type α1(I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 797-805.	2.5	60

#	Article	IF	CITATIONS
55	Biodistribution and Hepatic Uptake of Triplex-Forming Oligonucleotides against Type α1(I) Collagen Gene Promoter in Normal and Fibrotic Rats. Molecular Pharmaceutics, 2005, 2, 206-217.	4.6	41
56	Targeted Delivery of a Triplex-Forming Oligonucleotide to Hepatic Stellate Cellsâ€. Biochemistry, 2005, 44, 4466-4476.	2.5	45
57	Studies of Hydroxypropyl Methylcellulose Donut-Shaped Tablets. Drug Development and Industrial Pharmacy, 1999, 25, 1067-1071.	2.0	17