Kun Cheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2176477/publications.pdf

Version: 2024-02-01

57 3,305 31 54
papers citations h-index g-index

79 79 79 5044
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The role of HER2 in cancer therapy and targeted drug delivery. Journal of Controlled Release, 2010, 146, 264-275.	9.9	442
2	Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications. Journal of Controlled Release, 2017, 266, 17-26.	9.9	376
3	Prodrugs for improving tumor targetability and efficiency. Advanced Drug Delivery Reviews, 2011, 63, 659-670.	13.7	283
4	The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of Controlled Release, 2017, 245, 27-40.	9.9	193
5	TGF- \hat{l}^21 Gene Silencing for Treating Liver Fibrosis. Molecular Pharmaceutics, 2009, 6, 772-779.	4.6	92
6	Enzyme-responsive polymeric micelles of cabazitaxel for prostate cancer targeted therapy. Acta Biomaterialia, 2020, 113, 501-511.	8.3	88
7	Prostate cancer relevant antigens and enzymes for targeted drug delivery. Journal of Controlled Release, 2014, 187, 118-132.	9.9	86
8	Development of a Peptide–Drug Conjugate for Prostate Cancer Therapy. Molecular Pharmaceutics, 2011, 8, 901-912.	4.6	83
9	The Importance of Apparent pKa in the Development of Nanoparticles Encapsulating siRNA and mRNA. Trends in Pharmacological Sciences, 2021, 42, 448-460.	8.7	76
10	Discovery of low-molecular weight anti-PD-L1 peptides for cancer immunotherapy. , 2019, 7, 270.		74
11	Peptides Used in the Delivery of Small Noncoding RNA. Molecular Pharmaceutics, 2014, 11, 3395-3408.	4.6	71
12	siRNA- and miRNA-based therapeutics for liver fibrosis. Translational Research, 2019, 214, 17-29.	5.0	65
13	Comparison of Avidin, Neutravidin, and Streptavidin as Nanocarriers for Efficient siRNA Delivery. Molecular Pharmaceutics, 2017, 14, 1517-1527.	4.6	61
14	Enhanced Hepatic Uptake and Bioactivity of Type $\hat{l}\pm 1$ (I) Collagen Gene Promoter-Specific Triplex-Forming Oligonucleotides after Conjugation with Cholesterol. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 797-805.	2.5	60
15	The TIM3/Gal9 signaling pathway: An emerging target for cancer immunotherapy. Cancer Letters, 2021, 510, 67-78.	7.2	60
16	Targeted Drug Delivery to Hepatic Stellate Cells for the Treatment of Liver Fibrosis. Journal of Pharmacology and Experimental Therapeutics, 2019, 370, 695-702.	2.5	58
17	Silencing of the IKKl μ gene by siRNA inhibits invasiveness and growth of breast cancer cells. Breast Cancer Research, 2010, 12, R74.	5.0	55
18	Expression Profile and Functional Activity of Peptide Transporters in Prostate Cancer Cells. Molecular Pharmaceutics, 2013, 10, 477-487.	4.6	53

#	Article	IF	CITATIONS
19	Synergizing sunitinib and radiofrequency ablation to treat hepatocellular cancer by triggering the antitumor immune response., 2020, 8, e001038.		51
20	Intracellular trafficking and exocytosis of a multi-component siRNA nanocomplex. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 1323-1334.	3.3	49
21	Co-delivery of IKBKE siRNA and cabazitaxel by hybrid nanocomplex inhibits invasiveness and growth of triple-negative breast cancer. Science Advances, 2020, 6, eabb0616.	10.3	48
22	Targeted Delivery of a Triplex-Forming Oligonucleotide to Hepatic Stellate Cellsâ€. Biochemistry, 2005, 44, 4466-4476.	2.5	45
23	Inhibition of Breast Cancer Cell Growth and Invasiveness by Dual Silencing of HER-2 and VEGF. Molecular Pharmaceutics, 2010, 7, 543-556.	4.6	42
24	Biodistribution and Hepatic Uptake of Triplex-Forming Oligonucleotides against Type $\hat{l}\pm 1$ (I) Collagen Gene Promoter in Normal and Fibrotic Rats. Molecular Pharmaceutics, 2005, 2, 206-217.	4.6	41
25	Development of a peptide-modified siRNA nanocomplex for hepatic stellate cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 51-61.	3.3	41
26	Gene Modulation for Treating Liver Fibrosis. Critical Reviews in Therapeutic Drug Carrier Systems, 2007, 24, 93-146.	2.2	41
27	Site-Specific Delivery of Oligonucleotides to Hepatocytes after Systemic Administration. Bioconjugate Chemistry, 2008, 19, 290-298.	3.6	39
28	Development of cholesteryl peptide micelles for siRNA delivery. Journal of Controlled Release, 2013, 172, 159-168.	9.9	39
29	Discovery of PSMA-specific peptide ligands for targeted drug delivery. International Journal of Pharmaceutics, 2016, 513, 138-147.	5.2	39
30	Development of a Biocompatible Copolymer Nanocomplex to Deliver VEGF siRNA for Triple Negative Breast Cancer. Theranostics, 2019, 9, 4508-4524.	10.0	37
31	Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer. Nanomedicine, 2015, 10, 573-587.	3.3	34
32	Discovery of Peptide Ligands for Hepatic Stellate Cells Using Phage Display. Molecular Pharmaceutics, 2015, 12, 2180-2188.	4.6	33
33	Chemical Evidence for Potent Xanthine Oxidase Inhibitory Activity of Ethyl Acetate Extract of Citrus aurantium L. Dried Immature Fruits. Molecules, 2016, 21, 302.	3.8	33
34	Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of a Tumor-Responsive Nanopolyplex Targeting Pancreatic Cancer Cells and Stroma. ACS Applied Materials & Development of Applied Materials & Development &	8.0	33
35	Discovery of Aptamer Ligands for Hepatic Stellate Cells Using SELEX. Theranostics, 2017, 7, 2982-2995.	10.0	32
36	Blocking IKKα Expression Inhibits Prostate Cancer Invasiveness. Pharmaceutical Research, 2011, 28, 1357-1369.	3.5	28

#	Article	IF	Citations
37	An enzyme-responsive conjugate improves the delivery of a PI3K inhibitor to prostate cancer. Nanomedicine: Nanotechnology, Biology, and Medicine, 2016, 12, 2373-2381.	3.3	25
38	Identification of a LNCaP-Specific Binding Peptide Using Phage Display. Pharmaceutical Research, 2011, 28, 2422-2434.	3.5	24
39	Receptor-Mediated Hepatic Uptake of M6Pâ^'BSA-Conjugated Triplex-Forming Oligonucleotides in Rats. Bioconjugate Chemistry, 2006, 17, 823-830.	3.6	23
40	Development of Streptavidin-Based Nanocomplex for siRNA Delivery. Molecular Pharmaceutics, 2013, 10, 4534-4545.	4.6	22
41	A Novel Rapamycin-Polymer Conjugate Based on a New Poly(Ethylene Glycol) Multiblock Copolymer. Pharmaceutical Research, 2014, 31, 706-719.	3.5	22
42	Targeted Delivery of an siRNA/PNA Hybrid Nanocomplex Reverses Carbon Tetrachlorideâ€Induced Liver Fibrosis. Advanced Therapeutics, 2019, 2, 1900046.	3.2	19
43	Studies of Hydroxypropyl Methylcellulose Donut-Shaped Tablets. Drug Development and Industrial Pharmacy, 1999, 25, 1067-1071.	2.0	17
44	Coexpression of Vascular Endothelial Growth Factor and Interleukin-1 Receptor Antagonist for Improved Human Islet Survival and Function. Molecular Pharmaceutics, 2007, 4, 199-207.	4.6	17
45	PCBP2 siRNA Reverses the Alcohol-induced Pro-fibrogenic Effects in Hepatic Stellate Cells. Pharmaceutical Research, 2011, 28, 3058-3068.	3.5	17
46	Silencing PCBP2 normalizes desmoplastic stroma and improves the antitumor activity of chemotherapy in pancreatic cancer. Theranostics, 2021, 11, 2182-2200.	10.0	17
47	Discovery of Small Antiâ€ACE2 Peptides to Inhibit SARSâ€CoVâ€2 Infectivity. Advanced Therapeutics, 2021, 4, 2100087.	3.2	16
48	Cellular protein markers, therapeutics, and drug delivery strategies in the treatment of diabetes-associated liver fibrosis. Advanced Drug Delivery Reviews, 2021, 174, 127-139.	13.7	16
49	Computational Design of Miniproteins as SARS-CoV-2 Therapeutic Inhibitors. International Journal of Molecular Sciences, 2022, 23, 838.	4.1	15
50	Silencing of \hat{l}_{\pm} -complex protein-2 reverses alcohol- and cytokine-induced fibrogenesis in hepatic stellate cells. Liver Research, 2017, 1, 70-79.	1.4	14
51	siRNA Delivery and Targeting. Molecular Pharmaceutics, 2009, 6, 649-650.	4.6	11
52	Evaluation of Extraction and Degradation Methods to Obtain Chickpeasaponin B1 from Chickpea (Cicer) Tj ETQc	10 g.g rgB	T /Qyerlock 10
53	Biological and Therapeutic Applications of Small RNAs. Pharmaceutical Research, 2011, 28, 2961-2965.	3.5	9
54	LMO7 as an Unrecognized Factor Promoting Pancreatic Cancer Progression and Metastasis. Frontiers in Cell and Developmental Biology, 2021, 9, 647387.	3.7	8

Kun Cheng

#	Article	IF	CITATIONS
55	Noncovalent Attachment of Chemical Moieties to siRNAs Using Peptide Nucleic Acid as a Complementary Linker. ACS Applied Bio Materials, 2018, 1, 643-651.	4.6	5
56	RNA Interference for Cancer Therapy. , 2009, , 399-440.		4
57	Discovery of Anti-PD-L1 Human Domain Antibodies for Cancer Immunotherapy. Frontiers in Immunology, 2022, 13, 838966.	4.8	3